In: Computer Science
Write a python code using a continuous random variable and using uniform distribution to output the expected weight of students in a class.
Code #1 : Creating Uniform continuous random variable
# importing library
from scipy.stats import uniform
numargs = uniform.numargs
a, b = 0.2, 0.8
rv = uniform (a, b)
print ("RV : \n", rv)
Output :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at
0x000002A9D9F1E708
Code #2 : Uniform continuous variates and probability distribution
mport numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random
Variates
R = uniform .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
# PDF
x = np.linspace(uniform.ppf(0.01, a, b),
uniform.ppf(0.99, a, b), 10)
R = uniform.pdf(x, 1, 3)
Output :
Random Variates :
[0.30819979 0.95991962 0.70622125 0.60895239 0.72550267
0.73555393
0.3757751 0.88295358 0.50726709 0.57936421]
Probability Distribution :
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
print ("\nProbability Distribution : \n", R)
Code #3 : Graphical Representation.
import numpy as
np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution :
[0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
0.12244898 0.14285714 0.16326531 0.18367347 0.20408163
0.2244898
0.24489796 0.26530612 0.28571429 0.30612245 0.32653061
0.34693878
0.36734694 0.3877551 0.40816327 0.42857143 0.44897959
0.46938776
0.48979592 0.51020408 0.53061224 0.55102041 0.57142857
0.59183673
0.6122449 0.63265306 0.65306122 0.67346939 0.69387755
0.71428571
0.73469388 0.75510204 0.7755102 0.79591837 0.81632653
0.83673469
0.85714286 0.87755102 0.89795918 0.91836735 0.93877551
0.95918367
0.97959184 1.