Question

In: Computer Science

Write a python code using a continuous random variable and using uniform distribution to output the...

Write a python code using a continuous random variable and using uniform distribution to output the expected weight of students in a class.

Solutions

Expert Solution

Code #1 : Creating Uniform continuous random variable

# importing library
from scipy.stats import uniform
  
numargs = uniform.numargs
a, b = 0.2, 0.8
rv = uniform (a, b)
  
print ("RV : \n", rv)   

Output :

RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D9F1E708

Code #2 : Uniform continuous variates and probability distribution

mport numpy as np
quantile = np.arange (0.01, 1, 0.1)
  
# Random Variates
R = uniform .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
  
# PDF
x = np.linspace(uniform.ppf(0.01, a, b),
uniform.ppf(0.99, a, b), 10)
R = uniform.pdf(x, 1, 3)

Output :

Random Variates :
[0.30819979 0.95991962 0.70622125 0.60895239 0.72550267 0.73555393
0.3757751 0.88295358 0.50726709 0.57936421]

Probability Distribution :
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

print ("\nProbability Distribution : \n", R)

Code #3 : Graphical Representation.

import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))

Output :

Distribution :
[0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
0.36734694 0.3877551 0.40816327 0.42857143 0.44897959 0.46938776
0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
0.6122449 0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
0.73469388 0.75510204 0.7755102 0.79591837 0.81632653 0.83673469
0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
0.97959184 1.


Related Solutions

A random variable X follows the continuous uniform distribution with a lower bound of ?8 and...
A random variable X follows the continuous uniform distribution with a lower bound of ?8 and an upper bound of 11. a. What is the height of the density function f(x)? (Round your answer to 4 decimal places.)   f(x)    b. What are the mean and the standard deviation for the distribution? (Round your answers to 2 decimal places.)   Mean      Standard deviation    c. Calculate P(X ? ?6). (Round intermediate calculations to 4 decimal places and final answer to...
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
continuous random variable and uniform distribution please follow the comment. A random number generator spits out...
continuous random variable and uniform distribution please follow the comment. A random number generator spits out a random real number in the range [1,4] assume each number is equally likely being out. what is the probability that the model output an irrational number? the answer is 1, but i don't understand
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80...
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80 < X < 135). P(80 < X < 135) =
Program in python an example code for the random variable (Bernoulli distribution), where the user informs...
Program in python an example code for the random variable (Bernoulli distribution), where the user informs the data and parameters necessary to generate the cumulative distribution function (CDF.)
Let U be a uniform continuous random variable on the interval [2, 8]. (a) What is...
Let U be a uniform continuous random variable on the interval [2, 8]. (a) What is P(U = 4)? (b) What is P(U ≤ 4)? (c) What is P(4 ≤ U ≤ 7)? (d) Find a formula for FU(x). (e) Find a formula for fU(x). (f) What is E(U)? (g) What is Var(U)? (h) What is E(1 − U 2 )?
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always...
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always the positive root.) What is the P[X>=E[X]] ? What is the E[Y] ? what is the P[Y>=E[Y]]? what is the PFD of fY(y)?
Let x be a continuous random variable that follows a distribution skewed to the left with...
Let x be a continuous random variable that follows a distribution skewed to the left with ?= 92 and ?=15. Assuming n/N <= .05, find the probability that the sample mean, x bar, for a random sample of 62 taken from this population will be (ROUND ANSWERS TO FOUR DECIMAL PLACES): a) less than 81.5 P(less that 81.5)= b) greater than 89.7 P(greater than 89.7)= Please show your work.
Let be a continuous random variable that has a normal distribution with μ = 48 and...
Let be a continuous random variable that has a normal distribution with μ = 48 and σ = 8. Assuming , n/N ≤ 0.05, find the probability that the sample mean, x , for a random sample of 16 taken from this population will be more than 45.30 . Round your answer to four decimal places.
2] Let x be a continuous random variable that has a normal distribution with μ =...
2] Let x be a continuous random variable that has a normal distribution with μ = 48 and σ = 8 . Assuming n N ≤ 0.05 , find the probability that the sample mean, x ¯ , for a random sample of 16 taken from this population will be between 49.64 and 52.60 . Round your answer to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT