In: Statistics and Probability
Consider the set of ordered pairs shown below. Assuming that the regression equation is y= 5.594 minus 0.189 x and the SSE equals 6.27, construct a 95% confidence interval for xequals4. x 2 7 3 4 5 y 6 5 4 6 3 LOADING... Calculate the upper and lower limits of the confidence interval. UCL equals nothing LCL equals nothing (Round to three decimal places as needed.)
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: y
Independent Variable: x
y = 5.5945946 - 0.18918919 x
Sample size: 5
R (correlation coefficient) = -0.27910828
R-sq = 0.077901431
Estimate of error standard deviation: 1.4457144
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 5.5945946 | 1.7056317 | ≠ 0 | 3 | 3.2800719 | 0.0464 |
Slope | -0.18918919 | 0.37579556 | ≠ 0 | 3 | -0.50343647 | 0.6493 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 0.52972973 | 0.52972973 | 0.25344828 | 0.6493 |
Error | 3 | 6.2702703 | 2.0900901 | ||
Total | 4 | 6.8 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
4 | 4.8378378 | 0.650897 | (2.7663931, 6.9092826) | (-0.20787734, 9.883553) |
Hence,
95% confidence interval for x = 4 will be:
UCL = 6.909
LCL = 2.766