In: Statistics and Probability
Consider the set of ordered pairs shown below. Assuming that the regression equation is ModifyingAbove y with caret equals 2.628 plus 0.519 x and the SSE equals 16.296, construct a 95% confidence interval for xequals5. x 2 6 3 5 3 y 6 6 4 6 1
Click the icon to view a portion of the student's t-distribution table. Calculate the upper and lower limits of the confidence interval. UCL equals nothing LCL equals nothing
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 19 | 23 | 10.8 | 19.2 | 5.60 |
mean | 3.80 | 4.60 | SSxx | SSyy | SSxy |
sample size , n = 5
here, x̅ = Σx / n= 3.80 ,
ȳ = Σy/n = 4.60
SSxx = Σ(x-x̅)² = 10.8000
SSxy= Σ(x-x̅)(y-ȳ) = 5.6
estimated slope , ß1 = SSxy/SSxx = 5.6
/ 10.800 = 0.52
intercept, ß0 = y̅-ß1* x̄ =
2.63
so, regression line is Ŷ =
2.63 + 0.52 *x
SSE= (SSxx * SSyy - SS²xy)/SSxx =
16.296
std error ,Se = √(SSE/(n-2)) =
2.331
--------------------------------------------------------------------
X Value= 5
Confidence Level= 95%
Sample Size , n= 5
Degrees of Freedom,df=n-2 = 3
critical t Value=tα/2 = 3.182 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 3.80
Σ(x-x̅)² =Sxx 11
Standard Error of the Estimate,Se= 2.331
Predicted Y at X= 5 is
Ŷ = 2.62963 +
0.518519 * 5 =
5
19.080
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
1.346
margin of error,E=t*Std error=t* S(ŷ) =
3.1824 * 1.3456 =
4.2824
Confidence Lower Limit=Ŷ +E =
5.222 - 4.282 =
0.940
Confidence Upper Limit=Ŷ +E = 5.222
+ 4.282 =
9.505
THANKS
revert back for doubt
please upvote