Question

In: Statistics and Probability

Consider the set of ordered pairs shown below. Assuming that the regression equation is ModifyingAbove y...

Consider the set of ordered pairs shown below. Assuming that the regression equation is ModifyingAbove y with caret equals 2.628 plus 0.519 x and the SSE equals 16.296​, construct a​ 95% confidence interval for xequals5.    x 2 6 3 5 3    y 6 6 4 6 1

Click the icon to view a portion of the​ student's t-distribution table. Calculate the upper and lower limits of the confidence interval. UCL equals nothing LCL equals nothing

Solutions

Expert Solution

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 19 23 10.8 19.2 5.60
mean 3.80 4.60 SSxx SSyy SSxy

sample size ,   n =   5          
here, x̅ = Σx / n=   3.80   ,     ȳ = Σy/n =   4.60  
                  
SSxx =    Σ(x-x̅)² =    10.8000          
SSxy=   Σ(x-x̅)(y-ȳ) =   5.6          
                  
estimated slope , ß1 = SSxy/SSxx =   5.6   /   10.800   =   0.52
                  
intercept,   ß0 = y̅-ß1* x̄ =   2.63          
                  
so, regression line is   Ŷ =   2.63   +   0.52   *x
                  
SSE=   (SSxx * SSyy - SS²xy)/SSxx =    16.296          
                  
std error ,Se =    √(SSE/(n-2)) =    2.331          

--------------------------------------------------------------------

X Value=   5                      
Confidence Level=   95%                      
                          
                          
Sample Size , n=   5                      
Degrees of Freedom,df=n-2 =   3                      
critical t Value=tα/2 =   3.182   [excel function: =t.inv.2t(α/2,df) ]                  
                          
X̅ =    3.80                      
Σ(x-x̅)² =Sxx   11                      
Standard Error of the Estimate,Se=   2.331                      
                          
Predicted Y at X=   5   is                  
Ŷ =   2.62963   +   0.518519   *   5   =   5
           19.080              
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    1.346                      
margin of error,E=t*Std error=t* S(ŷ) =   3.1824   *   1.3456   =   4.2824      
                          
Confidence Lower Limit=Ŷ +E =    5.222   -   4.282   =   0.940      
Confidence Upper Limit=Ŷ +E =   5.222   +   4.282   =   9.505  
   

THANKS

revert back for doubt

please upvote


Related Solutions

Consider the set of ordered pairs shown below. Assuming that the regression equation is y with...
Consider the set of ordered pairs shown below. Assuming that the regression equation is y with caret=1.087+0.724x and the SSE=5.362​, construct a​ 90% prediction interval for x=1.     x 6 1 4 4 4 1     y 6 2 5 4 2 2 Calculate the upper and lower limits of the prediction interval. UPL= LPL=
Consider the set of ordered pairs shown below. Assuming that the regression equation is y with...
Consider the set of ordered pairs shown below. Assuming that the regression equation is y with caret=5.322-0.029x and the SSE=18.794​, construct a​ 95% prediction interval for x=6.     x 4 6 3 3 5    ------------------  y 6 7 4 7 2 Click the icon to view a portion of the​ student's t-distribution table. Calculate the upper and lower limits of the prediction interval. UPL= LPL=
Consider the set of ordered pairs shown below. Assuming that the regression equation is y= 5.594...
Consider the set of ordered pairs shown below. Assuming that the regression equation is y= 5.594 minus 0.189 x and the SSE equals 6.27​, construct a​ 95% confidence interval for xequals4.    x 2 7 3 4 5    y 6 5 4 6 3 LOADING... Calculate the upper and lower limits of the confidence interval. UCL equals nothing LCL equals nothing ​(Round to three decimal places as​ needed.)
Consider the following set of ordered pairs. x 5 2 2 3 7 6 y 3...
Consider the following set of ordered pairs. x 5 2 2 3 7 6 y 3 8 5 4 2 7 a. Using alphaequals0.10​, test for the significance of the regression slope. b. Construct a 90​% confidence interval for the population slope. a. Using alphaequals0.10​, test for the significance of the regression slope. Identify the null and alternative hypotheses. Upper H 0​: beta ▼ not equals less than greater than greater than or equals equals less than or equals nothing...
Consider the following set of ordered pairs. x 33 11 55 44 y 44 33 44...
Consider the following set of ordered pairs. x 33 11 55 44 y 44 33 44 44 ​a) Calculate the slope and​ y-intercept for these data. ​b) Calculate the total sum of squares​ (SST). ​c) Partition the sum of squares into the SSR and SSE.
Consider the following set of ordered pairs. x 4 2 4 3 6 4 y 5...
Consider the following set of ordered pairs. x 4 2 4 3 6 4 y 5 7 7 4 2 7 ​a) Calculate the correlation coefficient. ​b) Using alpha equals 0.05​, perform a hypothesis test to determine if the population correlation coefficient is less than zero. LOADING... Click the icon to view a portion of the​ Student's t-distribution table. ​a) requals nothing ​(Round to three decimal places as​ needed.) ​b) Determine the null and alternative hypotheses. Upper H 0​: rho...
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). Show that V is not a vector space. • u ⊕ v = (u1 + v1 + 1, u2 + v2 + 1 ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the...
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3...
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3 3 1    y −1 1 4 3 −1 a. Calculate the slope and​ y-intercept for these data. ^y=______ + (______) x ​(Round to four decimal places as​ needed.) b. Calculate the total sum of squares​ (SST). SST= ​(Round to one decimal place as​ needed.) c. Partition the sum of squares into the SSR and SSE. SSE= ​(Round to three decimal places as​ needed.)...
Find the regression equation using the following set of data with y as the response variable....
Find the regression equation using the following set of data with y as the response variable. x y 40.2 82.2 54.2 111.8 43 84.3 30.7 68.5 33 90.8 42.8 78.5 30.9 71.7 28.6 69.8 36.6 83.1 41.1 93.9 26.6 63.9 45.5 95.5 What is the correlation coefficient? use three decimal places. r =   What is the regression line equation. Use each value to three decimal places. ˆyy^ =  +  x What is the predicted value of the response variable, when using a...
Consider the data set below. Excel File: data12-33.xls The estimated regression equation is ŷ = 30.33...
Consider the data set below. Excel File: data12-33.xls The estimated regression equation is ŷ = 30.33 - 1.88x. Estimate the standard deviation of ŷ p when x = 3 (to 3 decimals). Develop a 95% confidence interval for the expected value of y when x = 3 (to 2 decimals). (  ,  ) Estimate the standard deviation of an individual value of y when x = 3 (to 2 decimals). Develop a 95% prediction interval for y wh
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT