Question

In: Physics

Two carts mounted on an air track are moving toward one another. Cart 1 has a...

Two carts mounted on an air track are moving toward one another. Cart 1 has a speed of 4.40 m/s and a mass of 0.530 kg. Cart 2 has a mass of 0.710 kg.

a) If the total momentum of the system is to be zero, what is the initial speed of cart 2?

b) Does it follow that the kinetic energy of the system is also zero since the momentum of the system is zero?

c) Determine the system's kinetic energy in order to substantiate your answer to part (b).

Solutions

Expert Solution

Mass of cart 1 is , Mass of cart 2 is

Initial speed of cart 1 is , Initial speed of cart is

a)

Total momentum of the system is zero,

negative sign indicates , the direction of cart 2 is opposite to direction of cart 1.

Initial speed of cart 2 is

b)

Kinetic energy of system

Kinetic energy cannot be equal to zero.

c)  


Related Solutions

Cart 1, with m1= 5.6 kg, is moving on a frictionless linear air track at an...
Cart 1, with m1= 5.6 kg, is moving on a frictionless linear air track at an initial speed of 1.7 m/s. It undergoes an elastic collision with an initially stationary cart 2, with m2, an unknown mass. After the collision, cart 1 continues in its original direction at 0.6 m/s a) what is the magnitude of the momentum of cart 2 before the collision? b) what is the magnitude of the momentum of cart 1 after the collision? c) what...
4) Two carts collide on a level track. Cart A has mass of 3 kg and...
4) Two carts collide on a level track. Cart A has mass of 3 kg and cart B has mass of 5 kg. Before the collision cart A moves towards stationary cart B with the speed of 5 m/s. a) What is the momentum of the system of two carts before the collision? b) What is the kinetic energy of the system of two carts before the collision? c) What is the momentum of the system of two carts after...
a cart of mass of 420 g moving on a frictioless horizontal linear air track at...
a cart of mass of 420 g moving on a frictioless horizontal linear air track at an initial speed of 1.4 m/s undergoes an elastic collision with an initially stationary cart of unknown mass M. after the collision the initial cart moves with a speed pf 0.76 m/s. (a). what is the mass of the cart . b) what is the velocity of the second cart after the collision .
A cart with mass 330 g moving on a frictionless linear air track at an initial...
A cart with mass 330 g moving on a frictionless linear air track at an initial speed of 2.1 m/s undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 1.05 m/s. 1.) What is the mass of the second cart? 2.)What is its (second cart) speed after impact? 3.)What is the speed of the two-cart center of mass?
A spring is mounted over an air track in such a way that the one end...
A spring is mounted over an air track in such a way that the one end of the spring is fixed and the other is connected to a spring scale. When the spring is stretched to 0.01 m a force of 1 N is registered on the spring scale. The spring is relaxed and a glider of 0.43 kg (resting on the air track) is connected to it. The glider-spring system is then pulled to the right through a distance...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass of 0.154 kg , is moving to the right with a speed of 0.810 m/s . The second cart, with a mass of 0.299 kg , is moving to the left with a speed of 2.21 m/s . The carts collide in an elastic collision, such that the total kinetic energy after the collsion is equal to the total kinetic energy before the collision....
Two carts on an air track have the same mass and speed and are traveling towards...
Two carts on an air track have the same mass and speed and are traveling towards each other. If they collide and stick together, find (a) the total momentum and (b) total kinetic energy of the system. (c) Describe a different colliding system with this same final momentum and kinetic energy.
Cart 1 amd 2 are now moving toward each other when they collide and stick together....
Cart 1 amd 2 are now moving toward each other when they collide and stick together. Cart 1 has a mass of 500g (.5kg) and is travelling at a speed of 0.30m/s to the right. Cart 2 has a mass of 350g (.35kg) and is travelling at a speed of 0.55m/s to the left. A) What is their velocity (speed and direction) after the collision? B) What % of the initial KE is lost in the collision? Please show all...
A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...
A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial xcomponent of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.70 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the carts...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track with a cart with mass 0.40 kg and velocity -0.20 m/s. What is the final velocity in m/s of the two carts if they stick together? vf= Part 2: What is the maximum height y that the pendulum can reach in this experiment? a) L b) y0-L c)0.3m d) y0+L e) y0f)0.2m Part 3: A pendulum has a length of L = 1.0 m...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT