Question

In: Economics

Suppose a Cobb Douglass production function with two inputs and exponents inside the production function y...

Suppose a Cobb Douglass production function with two inputs and exponents inside the production function y = x α1 1 x α2 2 that are less than one. Derive the profit maximizing choices of x1, x2, and y for arbitrary prices. How does this simply if α1 and α2 sum up to one?

Solutions

Expert Solution


Related Solutions

What are the special properties of the Cobb-Douglass production function, and how might the function be...
What are the special properties of the Cobb-Douglass production function, and how might the function be used to calculate the sources of growth?
What is production function? What is Cobb-Douglass production function? What is isoquant? What is a typical...
What is production function? What is Cobb-Douglass production function? What is isoquant? What is a typical shape of the rate of output as a function of labor or capital? What is the difference between marginal production and average production functions? Define the law of diminishing marginal return?
Suppose that an economy has a Cobb-Douglas production function with three inputs. K is capital (the...
Suppose that an economy has a Cobb-Douglas production function with three inputs. K is capital (the number of machines), L is labor (the number of workers), and H is human capital (the number of college degrees among workers). Markets for output and factors of production are both competitive. The production function is Y = K^1/3*L^1/3*H^1/3 1. Prove that this technology shows constant returns to scale. 2. Solve the competitive firm’s profit maximization problem by deriving the first-order conditions. 3. An...
Suppose there are two inputs in the production function, labor and capital, and these two inputs...
Suppose there are two inputs in the production function, labor and capital, and these two inputs are perfect substitutes. The existing technology permits 5 machines to do the work of 2 workers. So the production function is f(E, K) = 2K + 5E. The firm wants to produce q units of output, where q > 0 is some number. Suppose the price of capital is $10 per machine per hour. What combination of inputs will the firm use if the...
Suppose there are two inputs in the production function, labor and capital, and these two inputs...
Suppose there are two inputs in the production function, labor and capital, and these two inputs are perfect substitutes. The existing technology permits 3 machines to do the work of 2 worker. So F(E,K)=2K+3E. The firm wants to produce 60 units of output. Suppose the price of capital is $10 per machine per hour. What combination of inputs will the firm use if the wage rate is $10 or $15 or $20 per hour? What if the firm wants to...
1.A production function such as Y=AKaLb is called the Cobb-Douglas (C-D) production function. Only two factors...
1.A production function such as Y=AKaLb is called the Cobb-Douglas (C-D) production function. Only two factors of production are assumed here: capital (K) and labor (L), with A interpreted as the level of technology. Later, it was discovered that human capital (H) is also a "neglected"factor of production, assuming that the function satisfies constant return to scales for all the factors of production that it should include (except for technology). In the correct production function, there should be: A. a+b=1。...
3. Suppose that you have a Cobb-Douglas production function of the following form: Y = 0.25K0.24L...
3. Suppose that you have a Cobb-Douglas production function of the following form: Y = 0.25K0.24L 0.40D 0.10 (1) where Y is output, K is capital stock, L is labour, and D is land. (a) What is the interpretation of the individual exponents on K, L and D respectively? (b) What is the interpretation of the sum of these coefficients (i.e., which represents the degree of homogeneity for this function)? Is this function subject to constant, decreasing or increasing returns...
Suppose there are two inputs in the production function, labor and capital, which are substitutes. The...
Suppose there are two inputs in the production function, labor and capital, which are substitutes. The current wage is $10 per hour and the current price of capital is $25 per hour. Given the following information on the marginal product of labor and the marginal product of capital, find the firm’s profit-maximizing input mix (i.e. number of workers and units of capital) in the long-run. Show your work and explain. L MPL K MPK 1 125 1 130 2 100...
Consider the Cobb-Douglas production function Y = eb0 K b1 Lb2 eui where Y, K and...
Consider the Cobb-Douglas production function Y = eb0 K b1 Lb2 eui where Y, K and L denote real output, real capital input, and real labor input, respectively. The data for estimating the parameters of the production function are given in the Excel data file productionfunction.xls. Perform a logarithmic transformation of the production function to linearity so that it can be estimated by OLS. Compute the correlation coefficient between income lnK and lnL and comment on the potential for multicollinearity....
Consider an economy with the following Cobb-Douglas production function: Y = K1/3L 2/3 .
Consider an economy with the following Cobb-Douglas production function: Y = K1/3L 2/3 . The economy has 1,000 units of capital and a labor force of 1,000 workers. 1a. Derive an equation describing labor demand as a function of the real wage and the capital stock. (Hint: this is a review from what we did in Chapter 3)b. If the real wage can adjust to equilibrate labor supply and labor demand, what is the resulting equilibrium real wage? In this...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT