In: Statistics and Probability
Toss 4 fair coins and consider the following two r.v.'s:
X = number of Head's in the first 3 coin tosses, Y = number of Head's in the last 2 coin tosses,
what is the covariance Cov(3+2X,4+Y )?
so COV(3+2X,4+Y)=2COV(X,Y)
now COV(X,Y)=E[XY]-E[X]*E[Y]
now from the joint distribution,
E[XY]=0*0*P[X=0,Y=0]+1*0*P[X=1,Y=0]+2*0*P[X=2,Y=0]+3*0*P[X=3,Y=0]+
0*1*P[X=0,Y=1]+1*1*P[X=1,Y=1]+2*1*P[X=2,Y=1]+3*1*P[X=3,Y=1]+
0*2*P[X=0,Y=2]+1*2*P[X=1,Y=2]+2*2*P[X=2,Y=2]+3*2*P[X=3,Y=2]
=1*3/16+2*3/16+3*1/16+2*1/16+4*2/16+6*1/16
(3+6+3+2+8+6)16=28/16=1.75
E[X]=0*P[X=0]+1*P[X=1]*2*P[X=2]+3*P[X=3]=6/16+12/16+6/16=24/16=1.5
E[Y]=0*P[Y=0]+1*P[Y=1]+2*P[Y=2]=8/16+8/16=1
hence COV(X,Y)=1.75-1.5*1=0.25
so COV(3+2X,4+Y)=2COV(X,Y)=2*0.25=0.5 [answer]