Question

In: Computer Science

Write the binary representation of the decimal number -64 (negative 64) Assuming IEEE 754 single precision...

Write the binary representation of the decimal number -64 (negative 64)

  1. Assuming IEEE 754 single precision format
  2. Assuming 8-bit 2’s complement representation
  3. Assuming signed magnitude representation

Solutions

Expert Solution

(64)10 =(1000000)2

--------------------------------------------------------------------------------------------

(i) IEEE 754 single precision format:

Sign(S)(1bit) Exponent(E)(8bits) Mantissa(M)(23bits)

In Implicit form = (-1)S * 1.M * 2E-127

(-64)10 = (-1)1 * (1000000)2

= (-1)1 * (1.000000) *26

= (-1)1 * (1.000000) *26+127

= (-1)1 * (1.000000) *2133

Here, S=1, M=00000000, E= 133 = 10000101

(-64) in IEEE 754 single precision format =

1 10000101 00000000

--------------------------------------------------------------------------------------------------------

(ii)   8 bits 2's compliment representation:

(64)10 =(01000000)2

(-64)10 in 8 bits 2's complement =(11000000)2       ( ANSWER)

(-64)10 in 16 bits 2's complement =(1111111111000000)2

---------------------------------------------------------------------------------------------------------------------

(iii) Signed magnitude representation:

(-64)10 in 8 bits signed magnitude representation =(11000000)2

(-64)10 in 16 bits signed magnitude representation =(1000000001000000)2

---------------------------------------------------------

In 8 bits representation, both signed magnitude and 2's complement form looks same, but those two are different form if you see the 16 bits representation.


Related Solutions

6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following...
6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following 32-bit binary word? 1 10001000 10010000000000000000000
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List...
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List all the steps required to get the single and double precision.
Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in...
Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in 32-bit binary and show the calculation. -10^(−8)
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
Show the IEE 754 binary representation of the number 0.625 in: a. single precision. After you...
Show the IEE 754 binary representation of the number 0.625 in: a. single precision. After you show the calculations, create a table with 2 rows and 32 columns to show the binary representation of the number. b. double precision. After you show the calculations, create a table with 3 rows and 32 columns to show the binary representation of the number.
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
write value of PI(3.14159) in IEEE-754 single-precision format
write value of PI(3.14159) in IEEE-754 single-precision format
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT