Question

In: Mechanical Engineering

A supply line carries a two-phase liquid-vapor mixture of steam at 20 bars, state 1. A...

A supply line carries a two-phase liquid-vapor mixture of steam at 20 bars, state 1. A small fraction of the flow in the line is diverted through a throttling calorimeter and exhausted to the atmosphere at 100 kPa. The temperature of the exhaust steam, state 2 is measured as 373 K. Determine (a) the quality at the exit in %

Solutions

Expert Solution


Related Solutions

A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with a quality of 47.50%. Energy transfer by heat into the tank occurs until the refrigerant is at a final pressure of 6 bar. a) Determine the final temperature, in °C. b) If the final state is in the superheated vapor region, at what temperature, in °C, does the tank contain only saturated vapor?
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A...
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A at 44°F with a quality of 40%.
A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at...
A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at 100 lbf/in.2 Initially, saturated liquid occupies 1.6 ft3. The valve at the top of the tank develops a leak, allowing saturated vapor to escape slowly. Eventually, the volume of the liquid drops to 0.6 ft3. If the pressure in the tank remains constant, determine (a) the mass of refrigerant that has escaped, in lb, and (b) the heat transfer, in Btu. PLEASE USE THE...
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor...
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor composition at a given temperature during the distillation process.
Water changes between solid phase (as ice) and liquid phase at 0℃. and between liquid phase and gas phase (as water vapor) at 100 ℃.
  Water changes between solid phase (as ice) and liquid phase at 0℃. and between liquid phase and gas phase (as water vapor) at 100 ℃. Write a program to accept a temperature front keyboard, and display the corresponding water phase (solid, liquid or gas) under that temperature.
1. Obtain the equilibrium mole fractions (liquid and vapor) of a mixture of water, methanol and...
1. Obtain the equilibrium mole fractions (liquid and vapor) of a mixture of water, methanol and ethanol at 100 kPa and 70°C. You can assume the mixture is ideal. 2. Create one plot where the equilibrium mole fraction of benzene in the vapor phase is plotted against the equilibrium mole fraction of benzene in the liquid phase for three different pressures (0.2 bar, 0.6 bar and 1 bar). Comment on the effect of pressure on the relative volatility
A sample of water in the vapor phase (no liquid present) in a flask of constant...
A sample of water in the vapor phase (no liquid present) in a flask of constant volume exerts a pressure of 403 mmHg at 99°C. The flask is slowly cooled. i) Assuming no condensation, use the Ideal Gas Law to calculate the pressure of the vapor at 91°C; at 75°C. ii) Will condensation occur at 91°C? 75°C? iii) On the basis of your answers in i) and ii), predict the pressure exerted by the water vapor in the flask at...
Steam is compressed to a saturated vapor state at constant pressure. The steam started at 2...
Steam is compressed to a saturated vapor state at constant pressure. The steam started at 2 MPa and 365 C. What work was required and what was the specific heat transfer? Please show work so I can actually learn!
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a...
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a piston cylinder device at 100 kPa, initially 2 kg of water is in the liquid phase and the rest is in the vapor phase.Heat is now transferred to the water and the piston which is resting on a set of stops, starts moving when the pressure in side reaches 200 kPa, heat transfer continues until the total volume increases by 20%, determine a. the...
A mixture of ideal gases A (propane) and B (isopropanol) exist in a vapor-liquid equilibrium in...
A mixture of ideal gases A (propane) and B (isopropanol) exist in a vapor-liquid equilibrium in a constant temperature and pressure container. Originally, there is 1 mol A and 1 mol B. The mol fraction of A in the gas phase is 76% and 22% in the liquid phase. Gases A and B start to flow into the system at constant flow rates (at the same constant T and P). The flow rate of A is 3 mol/s. a. Calculate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT