Question

In: Advanced Math

Give examples–a formula and an illustration–of two-dimensional vector fields F⃗(x,y) with each of the following properties....

Give examples–a formula and an illustration–of two-dimensional vector fields F⃗(x,y) with each of the following properties. You could do the illustrations by hand.

a) The direction of F⃗ is constant but the magnitude is not constant.

b) The magnitude |F⃗| is constant but the direction is not constant.

c) All the vectors F⃗ along a horizontal line are equal, but F⃗ is not constant overall.

d) F⃗ (x, y) is perpendicular to xˆi + yˆj at every point (x, y).

e) F⃗ is a force field which repels from the origin. It is strongest near the origin, and weaker farther

away.

Solutions

Expert Solution



Related Solutions

Give 2 different examples of an infinite dimensional vector space and provide an explanation in possible....
Give 2 different examples of an infinite dimensional vector space and provide an explanation in possible. This is a review question for linear algebra and I am trying to better understand the concept. Thank you!
Use the divergence theorem to calculate the flux of the vector field F⃗ (x,y,z)=−5xyi⃗ +2yzj⃗ +4xzk⃗  through...
Use the divergence theorem to calculate the flux of the vector field F⃗ (x,y,z)=−5xyi⃗ +2yzj⃗ +4xzk⃗  through the sphere S of radius 2 centered at the origin and oriented outward. ∬SF⃗ ⋅dA⃗ =
In a two-dimensional Cartesian coordinate system the y-component of a given vector is equal to that...
In a two-dimensional Cartesian coordinate system the y-component of a given vector is equal to that vector's magnitude multiplied by which trigonometric function, with respect to the angle between vector and y-axis?
In each of the following examples, a consumer purchases just two goods: x and y. Based...
In each of the following examples, a consumer purchases just two goods: x and y. Based on the information provided, select the set of indifference curves that is the best match. Kieran considers chewing gum (x) to be a perfect substitute for mints (y). In the previous question, what is the marginal rate of substitution between chewing gum and mints? Enter an integer value               Maeve will only consume toast (x) with two eggs (y). Efia enjoys both boba tea...
For each of the following vector fields F, decide whether it is conservative or not by...
For each of the following vector fields F, decide whether it is conservative or not by computing curl F. Type in a potential function f (that is, ∇f=F). Assume the potential function has a value of zero at the origin. If the vector field is not conservative, type N. A. F(x,y)=(−14x−6y)i+(−6x+6y)j f(x,y)= C. F(x,y,z)=−7xi−6yj+k f(x,y,z)= D. F(x,y)=(−7siny)i+(−12y−7xcosy)j f(x,y)= E. F(x,y,z)=−7x^2i−6y^2j+3z^2k f(x,y,z)=
For each of the following vector fields F , decide whether it is conservative or not...
For each of the following vector fields F , decide whether it is conservative or not by computing curl F . Type in a potential function f (that is, ∇f=F). If it is not conservative, type N. A. F(x,y)=(10x+7y)i+(7x+10y)jF(x,y)=(10x+7y)i+(7x+10y)j f(x,y)=f(x,y)= B. F(x,y)=5yi+6xjF(x,y)=5yi+6xj f(x,y)=f(x,y)= C. F(x,y,z)=5xi+6yj+kF(x,y,z)=5xi+6yj+k f(x,y,z)=f(x,y,z)= D. F(x,y)=(5siny)i+(14y+5xcosy)jF(x,y)=(5sin⁡y)i+(14y+5xcos⁡y)j f(x,y)=f(x,y)= E. F(x,y,z)=5x2i+7y2j+5z2k
For each of the following vector fields F , decide whether it is conservative or not...
For each of the following vector fields F , decide whether it is conservative or not by computing curl F . Type in a potential function f (that is, ∇f=F). If it is not conservative, type N. A. F(x,y)=(−4x+5y)i+(5x+16y)j f(x,y)= ? B. F(x,y)=−2yi−1xj f(x,y)= ? C. F(x,y,z)=−2xi−1yj+k f(x,y,z)= ? D. F(x,y)=(−2siny)i+(10y−2xcosy)j f(x,y)= ? E. F(x,y,z)=−2x2i+5y2j+8z2k f(x,y,z)= ? Note: Your answers should be either expressions of x, y and z (e.g. "3xy + 2yz"), or the letter "N"
5. With each stated property, give an example of the 2-space vector field F(x,y). (a) F...
5. With each stated property, give an example of the 2-space vector field F(x,y). (a) F has a constant direction, but ||F|| increases when moving away from the origin. (b) F is perpendicular to the vector field and ||F||=5 everywhere.
Create a kD tree with: x-nodes and y-nodes -- and maintain the following two properties: The...
Create a kD tree with: x-nodes and y-nodes -- and maintain the following two properties: The children of an x-node are y-nodes The children of a y-node are x-nodes Each type of node uses a different comparison to order points. This causes different levels of the tree to compare points differently, using the following rules: For every x-node: All descendants in the left subtree have a smaller x-coordinate than the point stored at the node. Visually, all descendant points are...
Which of the following properties are vectors and which are scalars considering a three-dimensional space? Give...
Which of the following properties are vectors and which are scalars considering a three-dimensional space? Give a “typical” symbol and the S.I. units used to describe these properties, i.e. if I asked for mass density you would answer: ρ is a scalar in units g cm3 = 103 kg m3 ; maybe even state ρ = m V . a) force b) mass c) angular displacement d) energy e) linear acceleration f) the period of a pendulum g) work h)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT