Question

In: Physics

5. With each stated property, give an example of the 2-space vector field F(x,y). (a) F...

5. With each stated property, give an example of the 2-space vector field F(x,y). (a) F has a constant direction, but ||F|| increases when moving away from the origin. (b) F is perpendicular to the vector field and ||F||=5 everywhere.

Solutions

Expert Solution

F(x,y) is a 2 space vector

a) F is constant in direction but ||F|| increases when moving away from origin

Think of F as

              -------(1)

where x is variable and a is constant

We can consider a as zero also , hence F has constant direction i.e. +ve x axis direction even for non zero a

As a is constant ||F|| increases as x increases

Field F(X,Y) of (1) satisfies both conditions of constant direction and increasing NORM as we move away from origin

b) For ||F|| to be 5 everywhere there are many possibilities of coefficients of x and y

But for F to be perpendicular let us take

such that

Hence

Now for F to be perpendicular to vector field

We can think x=0

then

This is required result


Related Solutions

Verify the Divergence Theorem for the vector field F(x, y, z) = < y, x ,...
Verify the Divergence Theorem for the vector field F(x, y, z) = < y, x , z^2 > on the region E bounded by the planes y + z = 2, z = 0 and the cylinder x^2 + y^2 = 1. By Surface Integral: By Triple Integral:
A velocity vector field is given by F (x, y) = - i + xj a)...
A velocity vector field is given by F (x, y) = - i + xj a) Draw this vector field. b) Find parametric equations that describe the current lines in this field. c) Obtain the current line which passes through point (2,0) at time t = 0 and represent it graphically. d) Obtain the representation y = f(x) of the current line in part c).
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of...
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of the following expressions is meaningful. Which one? a) grad f x div F b) div(curl(grad f)) c) div(div F) d) curl(div(grad f)) e) grad(curl F)
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along...
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along the curve which is given by the intersection of the cylinder x 2 + y 2 = 4 and the plane x + y + z = 2 starting from the point (2, 0, 0) and ending at the point (0, 2, 0) with the counterclockwise orientation.
Consider the vector field F(x, y) = <3 + 2xy, x2 − 3y 2> (b) Evaluate...
Consider the vector field F(x, y) = <3 + 2xy, x2 − 3y 2> (b) Evaluate integral (subscript c) F · dr, where C is the curve (e^t sin t, e^t cost) for 0 ≤ t ≤ π.
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin...
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin to the point (3/5, -4/5) A. Express the flow described above as a single variable integral. B. Then compute the flow using the expression found in part A. Please show all work.
Let F be a field. (a) Prove that the polynomials a(x, y) = x^2 − y^2,...
Let F be a field. (a) Prove that the polynomials a(x, y) = x^2 − y^2, b(x, y) = 2xy and c(x, y) = x^2 + y^2 in F[x, y] form a Pythagorean triple. That is, a^2 + b^2 = c^2. Use this fact to explain how to generate right triangles with integer side lengths. (b) Prove that the polynomials a(x,y) = x^2 − y^2, b(x,y) = 2xy − y^2 and c(x,y) = x^2 − xy + y2 in F[x,y]...
(3) Let V be a vector space over a field F. Suppose that a ? F,...
(3) Let V be a vector space over a field F. Suppose that a ? F, v ? V and av = 0. Prove that a = 0 or v = 0. (4) Prove that for any field F, F is a vector space over F. (5) Prove that the set V = {a0 + a1x + a2x 2 + a3x 3 | a0, a1, a2, a3 ? R} of polynomials of degree ? 3 is a vector space over...
3. a) Consider the vector field F(x, y, z) = (2xy2 z, 2x 2 yz, x2...
3. a) Consider the vector field F(x, y, z) = (2xy2 z, 2x 2 yz, x2 y 2 ) and the curve r(t) = (sin t,sin t cost, cost) on the interval [ π 4 , 3π 4 ]. Calculate R C F · dr using the definition of the line integral. [5] b) Find a function f : R 3 → R so that F = ∇f. [5] c) Verify your answer from (a) using (b) and the Fundamental...
The Vector Field f(x, y) = (2x + 2y^2)i + (4xy - 6y^2)j has exactly one...
The Vector Field f(x, y) = (2x + 2y^2)i + (4xy - 6y^2)j has exactly one potential function f (x, y) that satisfies f(0, 0). Find this potential function , then find the value of this potential function at the point (1, 1).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT