In: Statistics and Probability
Use Excel Analysis ToolPak to solve.
Helmet Weight Price
Pyrotect Pro Airflow 64 248
Pyrotect Pro Airflow Graphics 64 278
RCi Full Face 64 200
RaceQuip RidgeLine 64 200
HJC AR-10 58 300
HJC Si-12 47 700
HJC HX-10 49 900
Impact Racing Super Sport 59 340
Zamp FSA-1 66 199
Zamp RZ-2 58 299
Zamp RZ-2 Ferrari 58 299
Zamp RZ-3 Sport 52 479
Zamp RZ-3 Sport Painted 52 479
Bell M2 63 369
Bell M4 62 369
Bell M4 Pro 54 559
G Force Pro Force 1 63 250
G Force Pro Force 1 Grafx 63 280
Automobile racing, high-performance driving schools, and driver
education programs run by automobile clubs continue to grow in
popularity. All these activities require the participant to wear a
helmet that is certified by the Snell Memorial Foundation, a
not-for-profit organization dedicated to research, education,
testing, and development of helmet safety standards. Snell “SA”
(Sports Application) rated professional helmets are designed for
auto racing and provide extreme impact resistance and high fire
protection. One of the
key factors in selecting a helmet is weight, since lower weight
helmets tend to place less stress on the neck. The following data
show the weight and price for 18 SA helmets
(SoloRacer website, April 20, 2008).
Required:
a. Develop a scatter diagram with weight as the independent
variable.
b. Does there appear to be any relationship between these two
variables?
c. Develop the estimated regression equation that could be used to
predict the price given the weight.
d. Test for the significance of the relationship (slope) at the .05
level of significance.
e. Did the estimated regression equation provide a good fit?
Explain.
helmet | weight(X) | price(Y) | XY | (X^2) | (Y^2) | |
Pyrotect Pro Airflow | 64 | 248 | 15872 | 4096 | 61504 | |
Pyrotect Pro Airflow Graphics | 64 | 278 | 17792 | 4096 | 77284 | |
RCi Full Face | 64 | 200 | 12800 | 4096 | 40000 | |
RaceQuip RidgeLine | 64 | 200 | 12800 | 4096 | 40000 | |
HJC AR-10 | 58 | 300 | 17400 | 3364 | 90000 | |
HJC Si-12 | 47 | 700 | 32900 | 2209 | 490000 | |
HJC HX-10 | 49 | 900 | 44100 | 2401 | 810000 | |
Impact Racing Super Spor | 59 | 340 | 20060 | 3481 | 115600 | |
Zamp FSA-1 | 66 | 199 | 13134 | 4356 | 39601 | |
Zamp RZ-2 | 58 | 299 | 17342 | 3364 | 89401 | |
Total | 593 | 3664 | 204200 | 35559 | 1853390 | |
Correlation = (it is strongly negatively correlated,becoz
increase in weight decreases the price and they have inverse
relationship among them)
|
||||||
Y(dependent variable) = a(intercept) + b(slope)X(independent variable) + e(error term)
Y = 232.8500253 + 1.859443038 * X
Regression Statistics | ||||||||||||
Multiple R | 0.921461091 | |||||||||||
R Square | 0.849090543 | |||||||||||
Adjusted R Square | 0.830226861 | |||||||||||
Standard Error | 98.17057993 | |||||||||||
Observations | 10 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 433800.6979 | 433800.6979 | 45.01191948 | 0.000151282 | |||||||
Residual | 8 | 77099.70211 | 9637.462763 | |||||||||
Total | 9 | 510900.4 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 2333.817813 | 294.8851541 | 7.914327936 | 4.71834E-05 | 1653.811428 | 3013.824197 | 1653.811428 | 3013.824197 | ||||
weight(X) | -33.17736615 | 4.945134851 | -6.709092299 | 0.000151282 | -44.58086757 | -21.77386473 | -44.58086757 | -21.77386473 | ||||
RESIDUAL OUTPUT | ||||||||||||
Observation | Predicted price(Y) | Residuals | Standard Residuals | |||||||||
1 | 210.4663791 | 37.53362091 | 0.405522885 | |||||||||
2 | 210.4663791 | 67.53362091 | 0.729650594 | |||||||||
3 | 210.4663791 | -10.46637909 | -0.113081449 | |||||||||
4 | 210.4663791 | -10.46637909 | -0.113081449 | |||||||||
5 | 409.530576 | -109.530576 | -1.183396488 | |||||||||
6 | 774.4816037 | -74.48160365 | -0.804718385 | |||||||||
7 | 708.1268714 | 191.8731286 | 2.073046586 | |||||||||
8 | 376.3532098 | -36.35320985 | -0.392769421 | |||||||||
9 | 144.1116468 | 54.88835321 | 0.593027872 | |||||||||
10 | 409.530576 | -110.530576 | -1.194200745 |
yes the regression model is a good fit