In: Math
The International Air Transport Association surveys business travelers to develop quality ratings for transatlantic gateway airports. The maximum possible rating is 10. Suppose a simple random sample of 50 business travelers is selected and each traveler is asked to provide a rating for the Miami International Airport. The ratings obtained from the sample of 50 business travelers follow.
| 4 | 8 | 9 | 10 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 7 | 6 | 
| 7 | 8 | 8 | 10 | 9 | 1 | 8 | 7 | 8 | 7 | 9 | 8 | 10 | 
| 6 | 4 | 8 | 1 | 1 | 8 | 8 | 7 | 10 | 9 | 7 | 1 | 7 | 
| 5 | 8 | 4 | 1 | 9 | 8 | 9 | 1 | 1 | 7 | 7 | 
Develop a 95% confidence interval estimate of the population mean rating for Miami (to 2 decimals).
( , )
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   3.0132
Sample Size ,   n =    50
Sample Mean,    x̅ = ΣX/n =    6.3200
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   49  
       
't value='   tα/2=   2.0096   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   3.0132   /
√   50   =   0.4261
margin of error , E=t*SE =   2.0096  
*   0.4261   =   0.8563
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    6.32  
-   0.856333   =   5.4637
Interval Upper Limit = x̅ + E =    6.32  
-   0.856333   =   7.1763
95%   confidence interval is (  
5.46   < µ <   7.18  
)