In: Physics
15 g of nitrogen gas at STP are adiabatically compressed to a pressure of 21 atm .
What is the final temperature of the gas?
What is the work done on the gas?
What is the heat input to the gas?
What is the compression ratio Vmax/Vmin?
1)
An ideal gas undergoing an adiabatic, reversible process satisfies the condition:
p∙V^γ = constant
throughout the process.
γ = Cp/Cv is the heat capacity ratio. For a diatomic ideal gas like nitrogen it is
γ = (7/2)∙R / (5/2)∙R = 7/5
Using ideal gas you may rewrite adiabatic equation as:
p^(γ-1)∙T^(-γ) = constant
Hence:
p₁^(γ-1) / T₁^γ = p₂^(γ-1) / T₂^γ
T₂ = T₁ ∙ (p₂/p₁)^[(γ-1)/γ]
= 273.15K ∙ (21atm / 1atm)^[(7/5-1)/(7/5)]
= 273.15K ∙ (21)^[2/7]
= 651.90 K
2)
The work done on the gas is given by the integral
W = - ∫ p dV from V₁ to V₂
V can expressed in terms of V by adiabatic equation:
p∙V^γ = constant = p₁∙V₁^γ
V = V₁∙p₁^(1/γ) ∙p^(-1/γ)
dV = V₁∙p₁^(1/γ) ∙ (-1/γ)∙p^(-1/γ - 1) dp
W = - ∫ p dV from V₁ to V₂
= - ∫ p ∙ V₁∙p₁^(1/γ) ∙ (-1/γ)∙p^(-1/γ - 1) dp from p₁ to p₂
= V₁∙p₁^(1/γ) ∙ (1/γ) ∙ ∫ p^(-1/γ) dp from p₁ to p₂
= V₁∙p₁^(1/γ) ∙ (1/γ) ∙ [1/(1 - 1/γ)] ∙ { p₂^[(1 - 1/γ)] - p₁^[(1 - 1/γ)] }
= V₁∙p₁^(1/γ) ∙ [1/(γ - 1)] ∙ { p₂^[(1 - 1/γ)] - p₁^[(1 - 1/γ)] }
= V₁∙p₁ ∙ [1/(γ - 1)] ∙ { (p₂/p₁)^[(1 - 1/γ)] - 1 }
= n∙R∙T₁ ∙ [1/(γ - 1)] ∙ { (p₂/p₁)^[(1 - 1/γ)] - 1 }
For this process
W = (15g/28g/mol) ∙ 8.314472J/molK ∙ 273.15K ∙ (5/2) ∙ { (21)^(2/7) -1}
W = 4217.27J
4)
T1 = 273.15 K
T2 = 651.9 K
Gas ideal equation,
PV = nRT
PV/T = nR = constant
P1V1/T1 = P2V2/T2
V2/V1 = (P1/P2) * (T2/T1) .... (1)
PV^k = constant
P1V1^k = P2V2^k
P1/P2 = (V2/V1)^k ............. (2)
(1) --> (2)
V2/V1 = (V2/V1)^k * (T2/T1)
(V2/V1)^1-k = (T2/T1)
(V2/V1) = (T2/T1)^1/(1-k)
V2 / V1 = (651.9/273.15)^(1/1-1.4)
V2 / V1 = 0.1136
V_max/Vmin = 8.799