In: Physics
A particle has a rest mass of 6.55×10−27 kg and a momentum of 4.34×10−18 kg⋅m/s . Determine the total relativistic energy of the particle
Momentum of a particle is given by:
P = m0*v*
m0 = rest mass = 6.55*10^-27 kg
P = momentum = 4.34*10^-18 kg-m/s
= Lorentz factor
= 1/sqrt (1 - v^2/c^2)
v = speed of particle
So,
P = m0*v/sqrt (1 - v^2/c^2)
After re-arranging above equation:
P^2*(1 - v^2/c^2) = m0^2*v^2
P^2 = m0^2*v^2 + P^2*v^2/c^2
v = p*c/sqrt (m0^2*c^2 + P^2)
Using given values:
v = 4.34*10^-18*3*10^8/sqrt ((6.55*10^-27)^2*(3*10^8)^2 + (4.34*10^-18)^2)
v = 2.733*10^8 m/sec
Now total relativistic energy of a particle is given by:
KEtot = m0*c^2*
KEtot = 6.55*10^-27*(3*10^8)^2/sqrt (1 - (2.733*10^8/(3*10^8))^2)
KEtot = 1.43*10^-9 J
Method 2:
Use this direction relation between total relativistic energy and rest mass
KEtot = sqrt (m0^2*c^4 + p^2*c^2)^2
KEtot = sqrt ((6.55*10^-27)^2*(3*10^8)^4 + (3*10^8)^2*(4.34*10^-18)^2)
KEtot = 1.43*10^-9 J
Please Upvote.