In: Finance
You are considering a 15-year, $1,000 par value bond. Its coupon rate is 8%, and interest is paid semiannually. If you require an "effective" annual interest rate (not a nominal rate) of 7.6420%, how much should you be willing to pay for the bond? Do not round intermediate calculations. Round your answer to the nearest cent.
$________
EAR = (1+r)^n - 1
0.076420 = ( 1+r)^2 - 1
1+0.076420 = (1+r)^2
(1+r)^2 = 1.076420
1+r = 1.076420^ (1/2)
= 1.0375
r = 1.0375 - 1
= 0.0375 i.e 3.75%
Int rate is 3.75% per six months.
Price of Bond is pV of CFs from it.
Period | CF | PVF @3.75% | Disc CF |
1 | $ 40.00 | 0.9639 | $ 38.55 |
2 | $ 40.00 | 0.9290 | $ 37.16 |
3 | $ 40.00 | 0.8954 | $ 35.82 |
4 | $ 40.00 | 0.8631 | $ 34.52 |
5 | $ 40.00 | 0.8319 | $ 33.28 |
6 | $ 40.00 | 0.8018 | $ 32.07 |
7 | $ 40.00 | 0.7728 | $ 30.91 |
8 | $ 40.00 | 0.7449 | $ 29.80 |
9 | $ 40.00 | 0.7180 | $ 28.72 |
10 | $ 40.00 | 0.6920 | $ 27.68 |
11 | $ 40.00 | 0.6670 | $ 26.68 |
12 | $ 40.00 | 0.6429 | $ 25.72 |
13 | $ 40.00 | 0.6197 | $ 24.79 |
14 | $ 40.00 | 0.5973 | $ 23.89 |
15 | $ 40.00 | 0.5757 | $ 23.03 |
16 | $ 40.00 | 0.5549 | $ 22.19 |
17 | $ 40.00 | 0.5348 | $ 21.39 |
18 | $ 40.00 | 0.5155 | $ 20.62 |
19 | $ 40.00 | 0.4969 | $ 19.87 |
20 | $ 40.00 | 0.4789 | $ 19.16 |
21 | $ 40.00 | 0.4616 | $ 18.46 |
22 | $ 40.00 | 0.4449 | $ 17.80 |
23 | $ 40.00 | 0.4288 | $ 17.15 |
24 | $ 40.00 | 0.4133 | $ 16.53 |
25 | $ 40.00 | 0.3984 | $ 15.94 |
26 | $ 40.00 | 0.3840 | $ 15.36 |
27 | $ 40.00 | 0.3701 | $ 14.80 |
28 | $ 40.00 | 0.3567 | $ 14.27 |
29 | $ 40.00 | 0.3438 | $ 13.75 |
30 | $ 40.00 | 0.3314 | $ 13.26 |
30 | $ 1,000.00 | 0.3314 | $ 331.40 |
Price of Bond | $ 1,044.57 |
Price of Bond is $ 1,044.57