In: Finance
Bond valuation
You are considering a 15-year, $1,000 par value bond. Its coupon rate is 8%, and interest is paid semiannually. If you require an "effective" annual interest rate (not a nominal rate) of 11.06%, how much should you be willing to pay for the bond? Do not round intermediate steps. Round your answer to the nearest cent.
$
Par/Face value | 1000 | |||||||||||||||||||||||||||||
Annual Coupon rate | 0.08 | |||||||||||||||||||||||||||||
Annual coupon | 80 | |||||||||||||||||||||||||||||
semi-annual coupon | 40 | |||||||||||||||||||||||||||||
Present Value = Future value/[(1+(r/m))^mt] | ||||||||||||||||||||||||||||||
the nominal rate or the yield to maturity has to be calculated using the effective interest rate that is 11.06%. | ||||||||||||||||||||||||||||||
r is the interest rate that is 10.77%. | ||||||||||||||||||||||||||||||
.1106 = ((1+i/2)^2) - 1 | ||||||||||||||||||||||||||||||
(1.1106)^(1/2) = (1+i/2) | ||||||||||||||||||||||||||||||
1.05385 - 1 = (i/2) | ||||||||||||||||||||||||||||||
I = 10.77% | ||||||||||||||||||||||||||||||
t is the year | ||||||||||||||||||||||||||||||
m is the compounding period that is 2 | ||||||||||||||||||||||||||||||
mt is the time period. | ||||||||||||||||||||||||||||||
price of the bond = sum of present values of future cash flows | ||||||||||||||||||||||||||||||
r/2 | 0.05385 | |||||||||||||||||||||||||||||
mt | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
future cash flow | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 1040 |
present value | 37.95607 | 36.01657 | 34.17619 | 32.42984 | 30.77273 | 29.20029 | 27.70821 | 26.29236 | 24.94886 | 23.67402 | 22.46432 | 21.31643 | 20.22719 | 19.19362 | 18.21285 | 17.28221 | 16.39911 | 15.56115 | 14.766 | 14.01148 | 13.29552 | 12.61614 | 11.97147 | 11.35975 | 10.77929 | 10.22848 | 9.705824 | 9.209872 | 8.739263 | 215.6102 |
sum of present values | 796.1253 | |||||||||||||||||||||||||||||
You should be willing to pay $796.1 for the bond. |