Question

In: Mechanical Engineering

A simple steam power cycle contains a turbine, condenser, pump and a boiler. If the turbine...

A simple steam power cycle contains a turbine, condenser, pump and a boiler. If the turbine inlet pressure is 14 MPa and 600 °C, and the Condenser Inlet Pressure is 18 kPa, calculate the following:

  1. Turbine Inlet Enthalpy (kJ/kg)
  2. Condenser Inlet Enthalpy (kJ/kg)
  3. Condenser Inlet Temperature (°C)
  4. Pump Inlet Enthalpy (kJ/kg)
  5. Boiler Inlet Enthalpy (kJ/kg)
  6. Boiler Inlet Temperature (°C)
  7. Turbine Work Output (kJ/kg)
  8. Boiler Heat Addition (kJ/kg)
  9. Net Work Output (kJ/kg)
  10. Efficiency of the Cycle (%)

Work as accurate as possible. For each correct answer you receive 1 Mark, thus 10 Maximum. Choose the most appropriate answer from the lists, and then continue with the chosen answer in order to have your calculations as accurate as possible.

Solutions

Expert Solution


Related Solutions

A simple steam power cycle contains a turbine, condenser, pump and a boiler. If the turbine...
A simple steam power cycle contains a turbine, condenser, pump and a boiler. If the turbine inlet pressure is 14.5 MPa and 550 °C, and the Condenser Inlet Pressure is 19 kPa, calculate the following: Turbine Inlet Enthalpy (kJ/kg) Condenser Inlet Enthalpy (kJ/kg) Condenser Inlet Temperature (°C) Pump Inlet Enthalpy (kJ/kg) Boiler Inlet Enthalpy (kJ/kg) Boiler Inlet Temperature (°C) Turbine Work Output (kJ/kg) Boiler Heat Addition (kJ/kg) Net Work Output (kJ/kg) Efficiency of the Cycle (%) Work as accurate as...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15 MPa and 900°C. The condenser pressure is 5 kPa. The turbine operates adiabatically and has an isentropic efficiency of 85%, and the pump also operates adiabatically and has an isentropic efficiency of 80%. Determine the work required to pump the water to the boiler in kJ/kg of water flowing, and the enthalpy of the water leaving the pump.
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
A steam turbine is to operate on a simple regenerative cycle. Steam is supplied dry saturated...
A steam turbine is to operate on a simple regenerative cycle. Steam is supplied dry saturated at 40 bar, and is exhausted to condenser at 0.07 bar. The condensate is pumped to pressure of 3.5 bar at which it is mixed with bleed steam from the turbine at 3.5 bar. The resulting water which is at saturated temperature is pumped to boiler. For the ideal cycle calculate, neglecting the feed pump work. 3 | P a g e I. The...
Rankine cycle operates on boiler pressure 15 MPa and condenser pressure of 30 kPa. Superheated steam...
Rankine cycle operates on boiler pressure 15 MPa and condenser pressure of 30 kPa. Superheated steam enters the high-pressure turbine at 450°C. The high-pressure turbine expands the steam and enters the re-heater at 2.5 MPa. The steam is reheated until temperature reaches 450°C before being expanded in low-pressure turbine to condenser pressure of 30 kPa. Assume the isentropic efficiency of the low-pressure and high-pressure turbines are 94% and 89% respectively, and pump is working isentropically. Neglect the change in kinetic...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 6 MPa and 450oC and is condensed in the condenser at 20 kPa. Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram and determine the fraction of steam extracted from the turbine for the open feedwater heater.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT