Question

In: Physics

The water in a river flows uniformly at a constant speed of 2.93 m/s between parallel...

The water in a river flows uniformly at a constant speed of 2.93 m/s between parallel banks 90.3 m apart. You are to deliver a package directly across the river, but you can swim only at 1.25 m/s.

(a) If you choose to minimize the time you spend in the water, in what direction should you head?

(b) How far downstream will you be carried?

(c) If you choose to minimize the distance downstream that the river carries you, in what direction should you head?

(d) How far downstream will you be carried?

Solutions

Expert Solution

a) To spend the least amount of time in the water, you should head directly toward the other bank. (90 degrees from the bank of the stream). This makes all of your speed used toward crossing the bank, and gives you the shortest time in the water.

b) To find the distance downstream you will be carried, you need to find the time in the water:

d = V * t
90.3 m = 1.25 m/s * t
t = 72.24 seconds

Then, the river will carry you downstream at 2.93 m/s for all 72.24 seconds, so the distance you will be carried downstream is:

d = V * t
d = 2.93 m/s * 72.24 seconds
d = 211.66 m

c) To minimize the distance downstream the river will carry you, you need to swim at a 135 (90 + 45) degree angle toward the stream.

d) To find the distance downstream you will be carried, you need to find the time in the water:

d = V * t
90.3 m = 1.25 * cos(45 degrees) * t
t = 102.16 seconds

Then, the river will carry you downstream at 2.93 m/s - 1.25 * sin(45 degrees) for all 102.16 seconds, so the distance you will be carried downstream is:

d = V * t
d = (2.93 - 1.25 * sin(45 degrees)) * 102.16 seconds
d = 209.03 m


Related Solutions

An electron travels with speed 2.0 × 107 m/s between the two parallel charged plates shown...
An electron travels with speed 2.0 × 107 m/s between the two parallel charged plates shown in the figure. The plates are separated by a 100 V battery. (a)What is the direction of the magnetic field to allow the electron to pass between the plates without being deflected? Explain how you determine the direction. (b) What magnetic field strength will allow the electron to pass between the plates without being deflected? SHOW FULL WORK
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s....
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s. If the diameter of the tire is 58.0 cm, find (a) the number of revolutions the tire makes during the motion, assuming that no slipping occurs. (b) What is the final angular speed of a tire in revolutions per second?                                           Answer:  (54.3 rev, 12.1 rev/s) --> please show me how to get this answer!
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and...
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and pressure at point A is 2.0 m/s and 2.0 x10^5 Pa respectively. What is the pressure at point B, which is 1.0 m higher than at point A.
A motorcycle accelerates uniformly from rest and reaches a linear speed of 22.8 m/s in a...
A motorcycle accelerates uniformly from rest and reaches a linear speed of 22.8 m/s in a time of 8.64 s. The radius of each tire is 0.266 m. What is the magnitude of the angular acceleration of each tire?
A river has a steady speed of 0.650 m/s. A student swims upstream a distance of...
A river has a steady speed of 0.650 m/s. A student swims upstream a distance of 1.00 km and swims back to the starting point. (a) If the student can swim at a speed of 1.15 m/s in still water, how long does the trip take? s (b) How much time is required in still water for the same length swim? s (c) Intuitively, why does the swim take longer when there is a current?
A river has a steady speed of 0.330 m/s. A student swims upstream a distance of...
A river has a steady speed of 0.330 m/s. A student swims upstream a distance of 1.00 km and swims back to the starting point. (a) If the student can swim at a speed of 1.10 m/s in still water, how long does the trip take? __________ s (b) How much time is required in still water for the same length swim? __________ s (c) Intuitively, why does the swim take longer when there is a current?
A river has a steady speed of 0.370 m/s. A student swims upstream a distance of...
A river has a steady speed of 0.370 m/s. A student swims upstream a distance of 1.00 km and swims back to the starting point. (a) If the student can swim at a speed of 1.30 m/s in still water, how long does the trip take? s (b) How much time is required in still water for the same length swim? s (c) Intuitively, why does the swim take longer when there is a current?
A 360-m-wide river has a uniform flow speed of 1.5 m/s through a jungle and toward...
A 360-m-wide river has a uniform flow speed of 1.5 m/s through a jungle and toward the east. An explorer wishes to leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of 5.8 m/s with respect to the water. There is a clearing on the north bank 65 m upstream from a point directly opposite the clearing on the south bank. (a) At what angle, measured relative to...
Water at a temperature of 80 °C and velocity of 1.2 m/s is flowing parallel to...
Water at a temperature of 80 °C and velocity of 1.2 m/s is flowing parallel to one side of a smooth flat plate. The plate is maintained at a constant temperature of 24 °C and is 0.8 m long and 0.5 m wide. Determine the following: The heat flux at a distance x = 0.6m from the front edge of the plate, q” = ____________ The location of the maximum heat flux on the plate, x = _________ The total...
A sailboat runs before the wind with a constant speed of 3.5 m/s in a direction...
A sailboat runs before the wind with a constant speed of 3.5 m/s in a direction 28 ∘ north of west. You may want to review (Pages 89 - 92) . How far west has the sailboat traveled in 22 min? How far north has the sailboat traveled in 22 min?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT