Question

In: Physics

An object is attached to a spring; which is attached to a wall. Describe its motion....

An object is attached to a spring; which is attached to a wall. Describe its motion. (max acceleration, max velocity).

Solutions

Expert Solution

In the above set of figures, a mass is attached to a spring and placed on a frictionless table. The other end of the spring is attached to the wall. The position of the mass, when the spring is neither stretched nor compressed, is marked as x=0 and is the equilibrium position. (a) The mass is displaced to a position x=A and released from rest. (b) The mass accelerates as it moves in the negative x-direction, reaching a maximum negative velocity at x=0. (c) The mass continues to move in the negative x-direction, slowing until it comes to a stop at x=−A. (d) The mass now begins to accelerate in the positive x-direction, reaching a positive maximum velocity at x=0. (e) The mass then continues to move in the positive direction until it stops at x=A. The mass continues in SHM that has an amplitude A and a period T. The object’s maximum speed occurs as it passes through equilibrium. The stiffer the spring is, the smaller the period T. The greater the mass of the object is, the greater the period T.

It was a pleasure answering your question. Hope this helps...

Good luck!


Related Solutions

An object attached to a spring vibrates with simple harmonic motion as described by the figure...
An object attached to a spring vibrates with simple harmonic motion as described by the figure below. (a) For this motion, find the amplitude.   (b) For this motion, find the period. (c) For this motion, find the angular frequency.  (d) For this motion, find the maximum speed  (e) For this motion, find the maximum acceleration.  (f) For this motion, find an equation for its position x in terms of a sine function. 
A 323 g object is attached to a spring and executes simple harmonic motion with a...
A 323 g object is attached to a spring and executes simple harmonic motion with a period of 0.210 s. If the total energy of the system is 6.70 J. (a) Find the maximum speed of the object. m/s (b) Find the force constant of the spring. N/m (c) Find the amplitude of the motion. mA 323 g object is attached to a spring and executes simple harmonic motion with a period of 0.210 s. If the total energy of...
A 318 g object is attached to a spring and executes simple harmonic motion with a...
A 318 g object is attached to a spring and executes simple harmonic motion with a period of 0.270 s. If the total energy of the system is 6.29 J. (a) Find the maximum speed of the object. (------m/s ?) (b) Find the force constant of the spring. (--------N/m ?) (c) Find the amplitude of the motion. (------- m ?)
A 3kg object is attached to spring and will stretch the spring 392mm by itself. There...
A 3kg object is attached to spring and will stretch the spring 392mm by itself. There is no damping in the system and a forcing function of F(t)=10 coswt, w=(k/w)-2 is attached to the object. The spring is deflected y distance father than equilibrium position due to the F(t). k is the spring modulus and M is the mass of the object. a) Derive the governing equation for the spring-object mass system decribed in the problem.Assume Mg=hk b) if the...
An object with m1 = 5kg is attached to a spring of negligible mass. This mass/spring...
An object with m1 = 5kg is attached to a spring of negligible mass. This mass/spring combination is then slid horizontally on a frictionless surface with a velocity of 5m/s towards a stationary object with m2 = 6kg. Upon impact, the spring compresses, then we examine two cases. First, find the velocities of the two objects assuming the spring completely relaxes again after the interaction. Second, assume that m2, after they separate, slides up a frictionless incline. (a) What is...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose it is displaced 0.125 m from its equilibrium position and released with zero initial speed. After 0.860 s, its displacement is found to be 0.125 m on the opposite side and it has passed the equilibrium position once during this interval.Find the amplitude of the motion.=________________mFind the period of the motion.=________________sFind the frequency of the motion.=_________________Hz
What happens if there is friction in the systems of an object attached to a spring?...
What happens if there is friction in the systems of an object attached to a spring? Discuss mechanical energy under these conditions.
An object with a mass m = 51.6 g is attached to a spring with a...
An object with a mass m = 51.6 g is attached to a spring with a force constant k = 17.3 N/m and released from rest when the spring is stretched 36.2 cm. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 10 cm below yi. (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.1 cm below the...
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 14 cm below yi. (a) What is the frequency of the oscillation? Hz (b) What is the speed of the object when it is 12.0 cm below...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT