Question

In: Physics

If an object on a horizontal frictionless surface is attached to a spring, displaced, and then...

If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose it is displaced 0.125 m from its equilibrium position and released with zero initial speed. After 0.860 s, its displacement is found to be 0.125 m on the opposite side and it has passed the equilibrium position once during this interval.

Find the amplitude of the motion.

=________________m

Find the period of the motion.

=________________s

Find the frequency of the motion.

=_________________Hz

Solutions

Expert Solution

Concepts and reason

The concept used to solve the problem is body in a Simple harmonic motion.

The equations of Simple Harmonic motion is used to determine amplitude, time period and frequency of the oscillation.

Fundamentals

The amplitude of the spring in an oscillatory motion is the maximum displacement made by the object. It is denoted by A.

Time period is the time taken by the object to complete one cycle or one oscillation. It is denoted as T.

Frequency of the object in oscillatory motion is the number of oscillations completed in one second. The frequency of the object is reciprocal of time period of the object. Frequency is expressed as follows:

Amplitude of the object is the maximum displacement. The object is displaced at 0.125m from the equilibrium position. The amplitude of the object is expressed as:

The time taken for the object from one end to the other end is 0.860 sec. The time taken to come back to the original position is given as:

Substitute 0.86 sec for and find the time period of the object.

The time period of the motion is 1.72 sec

The frequency of the oscillation is expressed as:

Substitute 1.72 sec for T and find the frequency of the oscillation.

The frequency of the oscillation is .

Ans:

The amplitude of the object is 0.125m

The time period of the motion is 1.72 sec

The frequency of oscillation is 0.581 Hz.


Related Solutions

A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 18.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring and oscillates with a period of 0.8 s. A second block rests on top of the first. The coefficient of static friction between the two blocks is 0.25. If the amplitude of oscillations is 1.2 cm, will the block on the top slip? What is the greatest amplitude of oscillation for which the top block will not slip?
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 48.7 n/m if the mass is 31.6 cm right (+) of the equilbrium point and moving at speed 4.8 m/s find the total mechanical energy.? ( question2-) A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 30.3 n/m .if the mass is 24.5 cm right (+)...
A mass resting on a horizontal, frictionless surface is attached to one end of a spring;...
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It takes 3.7 J of work to compress the spring by 0.14 m . If the spring is compressed, and the mass is released from rest, it experiences a maximum acceleration of 12 m/s2. Find the value of the spring constant. Find the value of the mass.
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.4 kN/m. The block is pulled to the right so that the spring is stretched 5.8 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 38 N. (a) What is the kinetic energy of the block when it has moved 2.2 cm from...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 2.9 kN/m. The block is pulled to the right so that the spring is stretched 8.4 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 2.7 cm from...
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal...
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal spring of k = 210 N/m. The spring is stretched so that the block is 27 cm away from the spring’s equilibrium position and released from rest. a) What is the velocity of the block when it passes through the equilibrium point? b) At what distance from equilibrium is the spring’s potential energy equal to the block’s kinetic energy? c) Suppose the block has...
A block rests on a horizontal frictionless table. It is attached to a spring and set...
A block rests on a horizontal frictionless table. It is attached to a spring and set into motion. Consider what will happen to the frequency or period in each of the following situations. (increase, decrease, or stay the same) If the spring constant is cut in half (looser spring), the frequency will _______. If the spring constant is cut in half (looser spring), the period will _______. If the amplitude of the motion is doubled, the frequency will ______. If...
A mass sliding on a frictionless table is attached to a horizontal spring. It is noted...
A mass sliding on a frictionless table is attached to a horizontal spring. It is noted to be at position x1 moving with a speed |v1|, and several seconds later at position x2 moving with a speed |v2|. What is the period of the mass attached to the spring? Choose x1 = 0.85m, x 2 = 1.1m, |v1| = 2.4m/s, and |v2|= 1.9m/s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT