In: Statistics and Probability
Construct the indicated prediction interval for an individual y.
The equation of the regression line for the paired data below is \hat{y}=6.1829+4.3394x and the standard error of estimate is se=1.6419.
Find the 99% prediction interval of y for x=14.
x: 9 7 2 3 4 22 17
y: 43 35 16 21 23 102 81
SSE =Syy-(Sxy)2/Sxx= | 13.4794 |
s2 =SSE/(n-2)= | 2.6959 | |
std error σ = | =se =√s2= | 1.6419 |
x = | 14 | |||
predcited value at X=14: | 66.93 | |||
std error prediction interval= s*√(1+1/n+(x0-x̅)2/Sxx)= | 1.8068 | |||
for 99 % CI value of t= | 4.032 | |||
margin of error E=t*std error = | 7.285 | |||
lower prediction bound=sample mean-margin of error = | 59.6490 | |||
Upper prediction bound=sample mean+margin of error= | 74.2192 |
99% prediction interval =(59.6490 , 74.2192)
(please take care of number of decimals required)