Question

In: Statistics and Probability

4) The National Transportation Safety Board (NTSB) wanted to examine the safety of three different car...


4) The National Transportation Safety Board (NTSB) wanted to examine the safety of three different car types, as measured by head crash test percentages. Cars were classified into three groups: compact (M = , SS = ), midsized (M = , SS = ), and full-size (M = , SS = ). A one-way ANOVA was conducted and determine that there was a statistically significant (or no significant) difference between safety and type of car, F( ___, _____) = _________.

Solutions

Expert Solution

To examine the safety of three different car types, as measured by head crash test percentages data example:

Compact Cars MidSize Cars Full Size Cars
541 350 380
530 333 353
604 510 303

Now state the null and alternative hypothesis:

The significance level = 0.05.

Find Mean(M) and Sum of Square(SS):

From above calculation Mean(M) and Sum of Square(SS) for three groups:

For Compact Cars:

M = 558.333 and SS = 3188.66

For MidSize Cars:

M = 397.667 and SS = 19072.66

For Full Size Cars:

M = 345.333 and SS = 3052.66

Now Find F statistics:

The total size is 9

The size in each group is 3.

Degree of freedom of within gruops.

Take Grand total of each value.

Take the total of each group then sum of the square.

SS between = SS total - SS within = 99235.556 - 25314 = 73921.556

F critical value with degree of freedom (2,6) at 0.05 = 5.143

So, F- statistics is greater than F critical value, we reject the null hypothesis, so there is a significant difference.

APA format:

compact (M = 558.333, SS = 3188.66), midsized (M = 397.667, SS = 19072.66 ), and full-size (M = 345.333, SS = 3052.66). A one-way ANOVA was conducted and determine that there was a statistically significant difference between safety and type of car, F( 2, 6) = 8.761.


Related Solutions

Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of ten for each of the treatments (cars types). Using the hypothetical data provided below, test whether the mean pressure applied to the driver’s head during a crash test is equal for each types of car. At the 0.05 significance level, can we conclude that there is a difference in the mean pressures between compact, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of cars each of the cars types. The data below displays the frontal crash test performance percentages. Test whether there are statistical differences in the frontal crash test performance for each type of car. Compact Cars Midsize Cars Full-Size Cars 95 95 93 98 98 97 87 98 92 99 89 92 99 94 84 94...
7. Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars,...
7. Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). The hypothetical data provided below from 10 trials report the mean pressure applied to the driver’s head during a crash test for each type of car. Compact: 635, 671, 648, 685, 648, 651, 654, 682, 687, 627 Midsize: 482, 529, 541, 518, 497, 526, 507, 492,...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). Using the data provided below, test whether the mean pressure applied to the driver’s head during a crash test is equal for each types of car. Use α = 5%. Compact cars Midsize cars Full-size cars 64 46 47 65 43 45 69 52 40 Average: 66...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the car types. Using the data provided below Pressure Car Type 643 Compact 655 Compact 702 Compact 469 MidSize 427 MidSize 525 MidSize 484 FullSize 456 FullSize 402 FullSize Test, using Mood’s Median Test, whether the median pressure applied to the driver’s head during a crash test is equal for each...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of cars each of the cars types. The data below displays the frontal crash test performance percentages. Compact Cars Midsize Cars Full-Size Cars 95 95 93 98 98 97 87 98 92 99 89 92 99 94 84 94 88 87 99 93 88 98 99 89 Patrick wants to purchase a new car, but he...
A business consultant for the National Transportation Safety Board (NTSB), collected data on the safety of...
A business consultant for the National Transportation Safety Board (NTSB), collected data on the safety of hybrid automobiles traveling at 30, 40 and 50 miles per hour.  She randomly assigned the same hybrid model to each condition and collected data on the pressure applied to the driver’s head during a crash into a wall at each speed. What is the independent variable? Dependent variable? Is she able to make cause and effect statements about the cars the head pressure? Explain. ...
Suppose the National Transportation Safety Board wants to examine the safety of compact cars, midsize cars,...
Suppose the National Transportation Safety Board wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). Test the claim that the mean pressure applied to the driver's head during a crash is equal for all three types of cars. Use α = 0.05 Compact Cars 643 655 702 Midsize Cars 469 427 525 Full-size Cars 484 456 402 Show your 6 steps labeled in...
You're an investigator for the National Transportation Safety Board, examining a subway accident in which a...
You're an investigator for the National Transportation Safety Board, examining a subway accident in which a train going at 84 km/hkm/h collided with a slower train traveling in the same direction at 20 km/hkm/h . Your job is to determine the relative speed of the collision, to help establish new crash standards. The faster train's "black box" shows that it began negatively accelerating at 1.8 m/s2m/s2 when it was 44 mm from the slower train, while the slower train continued...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally injured automobile drivers were intoxicated. A random sample of 51 records of automobile driver fatalities in a certain county showed that 33 involved an intoxicated driver. Do these data indicate that the population proportion of driver fatalities related to alcohol is less than 77% in Kit Carson County? Use α = 0.10. (a) What is the level of significance? State the null and alternate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT