Question

In: Statistics and Probability

A business consultant for the National Transportation Safety Board (NTSB), collected data on the safety of...

A business consultant for the National Transportation Safety Board (NTSB), collected data on the safety of hybrid automobiles traveling at 30, 40 and 50 miles per hour.  She randomly assigned the same hybrid model to each condition and collected data on the pressure applied to the driver’s head during a crash into a wall at each speed.


What is the independent variable? Dependent variable?


Is she able to make cause and effect statements about the cars the head pressure? Explain.  Give a hypothetical cause and effect statement.


Assume for a moment that she randomly selected 9 hybrids from the thousands of hybrids produced by the manufacturer.  Is she able to generalize to all automobiles produced by that manufacturer? Explain.


Solutions

Expert Solution

(i)

The independent variable is speed of hybrid automobiles during a crash into a wall

(ii)

Dependent variable : pressure applied to the driver’s head during a crash into a wall

(iii)

She is able to make cause and effect statements about the cars the head pressure because she collected data on the pressure applied to the driver’s head during a crash into a wall at each speed. A hypothetical cause and effect statement is as follows:

The increase in the speed of hybrid automobiles during a crash into a wall causes corresponding increase in the pressure applied to the driver’s head during a crash into a wall

(iv)

She is not able to generalize to all automobiles produced by that manufacturer because factors other than the speed of hybrid automobiles during a crash into a wall which causes the pressure applied to the driver’s head, confounding variables such as road condition, traffic congestion, driver's condition: whether he is drunk, etc., are not controlled in this experimentation.


Related Solutions

Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of ten for each of the treatments (cars types). Using the hypothetical data provided below, test whether the mean pressure applied to the driver’s head during a crash test is equal for each types of car. At the 0.05 significance level, can we conclude that there is a difference in the mean pressures between compact, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of cars each of the cars types. The data below displays the frontal crash test performance percentages. Test whether there are statistical differences in the frontal crash test performance for each type of car. Compact Cars Midsize Cars Full-Size Cars 95 95 93 98 98 97 87 98 92 99 89 92 99 94 84 94...
4) The National Transportation Safety Board (NTSB) wanted to examine the safety of three different car...
4) The National Transportation Safety Board (NTSB) wanted to examine the safety of three different car types, as measured by head crash test percentages. Cars were classified into three groups: compact (M = , SS = ), midsized (M = , SS = ), and full-size (M = , SS = ). A one-way ANOVA was conducted and determine that there was a statistically significant (or no significant) difference between safety and type of car, F( ___, _____) = _________.
7. Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars,...
7. Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). The hypothetical data provided below from 10 trials report the mean pressure applied to the driver’s head during a crash test for each type of car. Compact: 635, 671, 648, 685, 648, 651, 654, 682, 687, 627 Midsize: 482, 529, 541, 518, 497, 526, 507, 492,...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). Using the data provided below, test whether the mean pressure applied to the driver’s head during a crash test is equal for each types of car. Use α = 5%. Compact cars Midsize cars Full-size cars 64 46 47 65 43 45 69 52 40 Average: 66...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the car types. Using the data provided below Pressure Car Type 643 Compact 655 Compact 702 Compact 469 MidSize 427 MidSize 525 MidSize 484 FullSize 456 FullSize 402 FullSize Test, using Mood’s Median Test, whether the median pressure applied to the driver’s head during a crash test is equal for each...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize...
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of cars each of the cars types. The data below displays the frontal crash test performance percentages. Compact Cars Midsize Cars Full-Size Cars 95 95 93 98 98 97 87 98 92 99 89 92 99 94 84 94 88 87 99 93 88 98 99 89 Patrick wants to purchase a new car, but he...
As part of a study on transportation safety, the U.S. Department of Transportation collected data on...
As part of a study on transportation safety, the U.S. Department of Transportation collected data on the number of fatal accidents per 1000 licenses and the percentage of licensed drivers under the age of 21 in a sample of 42 cities. Data collected over a one-year period follow. These data are contained in the file named “Safety.csv”. 1- Find the sample mean and standard deviation for each variable. Round your answers to the nearest thousandth. 2- Use the function lm()...
As part of a study on transportation safety, the U.S. Department of Transportation collected data on...
As part of a study on transportation safety, the U.S. Department of Transportation collected data on the number of fatal accidents per 1000 licenses and the percentage of licensed drivers under the age of 21 in a sample of 42 cities. Data collected over a one-year period follow. These data are contained in the file named “Safety.csv”. 1- Find the sample mean and standard deviation for each variable. Round your answers to the nearest thousandth. 2- Use the function lm()...
Suppose the National Transportation Safety Board wants to examine the safety of compact cars, midsize cars,...
Suppose the National Transportation Safety Board wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the treatments (cars types). Test the claim that the mean pressure applied to the driver's head during a crash is equal for all three types of cars. Use α = 0.05 Compact Cars 643 655 702 Midsize Cars 469 427 525 Full-size Cars 484 456 402 Show your 6 steps labeled in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT