Question

In: Advanced Math

Problem 2: Let f and g be two differentiable functions defined on an interval (a,b). Assume...

Problem 2: Let f and g be two differentiable functions defined on an interval (a,b).

Assume that g(x) dne 0 for all x ∈ (a, b). Prove that f/g is differentiable and (f/g)'(x) = (f'(x)g(x)-f(x)g'(x))/(g^2(x))

for all x ∈ (a, b)

Solutions

Expert Solution

Let, and

Since, is differentiable at ,   is continuous at   .

Since

There exists a neighbourhood of such that , for all   

therefore for ,

Then,

since,

is continuous at

since and are differentiable at ,

and

therefore

and this shows that is differentiable at ,which is any point arbitrarily choosen from the given interval and


Related Solutions

If f and g are both differentiable functions. If h = f g, then h'(2) is: ___________________
  If f and g are both differentiable functions. If h = f g, then h'(2) is: ___________________ Given the function: y=sin(4x)+e^-3x and dx/dt = 3 when x=0. Then dy/dt = ________________ when x=0. Let f(x) = ln (√x). The value of c in the interval (1,e) for which f(x) satisfies the Mean Value Theorem (i.e f'(c)= f(e)-f(1) / e-1 ) is: _________________________ Suppose f(x) is a piecewise function: f(x) = 3x^2 -11x-4, if x ≤ 4 and f(x) =...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f rises strictly monotonously ⇒ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?) If f is reversable, f has no critical point. (TRUE or FALSE?) If a is a “minimizer” of f, then f ′(a)...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable and f^(n)(x) = 0 for all x∈(a,b). Show that f is a polynomial of degree at most n−1.
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
Let f : N → N and g : N → N be the functions defined...
Let f : N → N and g : N → N be the functions defined as ∀k ∈ N f(k) = 2k and g(k) = (k/2 if k is even, (k + 1) /2 if k is odd). (1) Are the functions f and g injective? surjective? bijective? Justify your answers. (2) Give the expressions of the functions g ◦ f and f ◦ g? (3) Are the functions g ◦ f and f ◦ g injective? surjective? bijective?...
Let f(x) be differentiable on the interval [a,b]. Select all of the following statements which must...
Let f(x) be differentiable on the interval [a,b]. Select all of the following statements which must be true. 1. f(x) must attain its maximum value on the interval [a,b] 2. There is some number c in the interval (a,b) such that f′(c)= (f(b)−f(a))/ (b−a) 3. f(x) is integrable on [a,b]. 4. f(x) is continuous on (a,b). 5. f(x) is a polynomial. 6. f(x) is an increasing function.
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information...
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information to prove thatL(f)≤L(g)andU(f)≤U(g). Information: g : [0, 1] —> R be defined by if x=0, g(x)=1; if x=m/n (m and n are positive integer with no common factor), g(x)=1/n; if x doesn't belong to rational number, g(x)=0 g is discontinuous at every rational number in[0,1]. g is Riemann integrable on [0,1] based on the fact that Suppose h:[a,b]→R is continuous everywhere except at a...
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and...
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and such that f(a)=f(b). Then there exists at least one point c on (a,b) such that f'(c)=0." Rolle's Theorem requires three conditions be satisified. (a) What are these three conditions? (b) Find three functions that satisfy exactly two of these three conditions, but for which the conclusion of Rolle's theorem does not follow, i.e., there is no point c in (a,b) such that f'(c)=0. Each...
Let a < c < b, and let f be defined on [a,b]. Show that f...
Let a < c < b, and let f be defined on [a,b]. Show that f ∈ R[a,b] if and only if f ∈ R[a, c] and f ∈ R[c, b]. Moreover, Integral a,b f = integral a,c f + integral c,b f .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT