Question

In: Statistics and Probability

Prove by induction on n that the number of distinct handshakes between n ≥ 2 people...

Prove by induction on n that the number of distinct handshakes between n ≥ 2 people in a room is n*(n − 1)/2 .

Remember to state the inductive hypothesis!

Solutions

Expert Solution

The solution to this problem is given below


Related Solutions

Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
If you prove by strong induction a statement of the form ∀ n ≥ 1P(n), the...
If you prove by strong induction a statement of the form ∀ n ≥ 1P(n), the inductive step proves the following implications (multiple correct answers are possible): a) (P(1) ∧ P(2)) => P(3) b) (P(1) ∧ P(2) ∧ P(3)) => P(4) c) P(1) => P(2)
a) Prove by induction that if a product of n polynomials is divisible by an irreducible...
a) Prove by induction that if a product of n polynomials is divisible by an irreducible polynomial p(x) then at least one of them is divisible by p(x). You can assume without a proof that this fact is true for two polynomials. b) Give an example of three polynomials a(x), b(x) and c(x), such that c(x) divides a(x) ·b(x), but c(x) does not divide neither a(x) nor b(x).
Use mathematical induction to prove that for every integer n >=2, if a set S has...
Use mathematical induction to prove that for every integer n >=2, if a set S has n elements, then the number of subsets of S with an even number of elements equals the number of subsets of S with an odd number of elements. pleases send all detail solution.
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
If n>=2, prove the number of prime factors of n is less than 2ln n.
If n>=2, prove the number of prime factors of n is less than 2ln n.
Prove that for all integers n ≥ 2, the number p(n) − p(n − 1) is...
Prove that for all integers n ≥ 2, the number p(n) − p(n − 1) is equal to the number of partitions of n in which the two largest parts are equal.
Prove by induction that 14^n + 12^n −5^n is divisible by 7 for all n >0
Prove by induction that 14^n + 12^n −5^n is divisible by 7 for all n >0
Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple...
Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple of 5.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT