Question

In: Advanced Math

Prove using the principle of mathematical induction: (i) The number of diagonals of a convex polygon...

Prove using the principle of mathematical induction:

(i) The number of diagonals of a convex polygon with n vertices is n(n − 3)/2, for n ≥ 4,

(ii) 2n < n! for all n > k > 0, discover the value of k before doing induction

Solutions

Expert Solution


Related Solutions

What is similarity and difference between first principle induction mathematical and second principle induction mathematical ?...
What is similarity and difference between first principle induction mathematical and second principle induction mathematical ? When to use each principle? are there characteristics that distinguish the issue to be solved by the first or second principle?!
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
Prove using the short north-east diagonals or any other mathematical method of your preference, that if...
Prove using the short north-east diagonals or any other mathematical method of your preference, that if A is enumerable, then it is also countable with an enumeration that lists each of its members exactly three (3) times. Hint. Your proof will consist of constructing an enumeration with the stated requirement.
In this problem we prove that the Strong Induction Principle and Induction Principle are essentially equiv-...
In this problem we prove that the Strong Induction Principle and Induction Principle are essentially equiv- alent via Well-Ordering Principle. (a) Assume that (i) there is no positive integer less than 1, (ii) if n is a positive integer, there is no positive integer between n and n+1, and (iii) the Principle of Mathematical Induction is true. Prove the Well-Ordering Principle: If X is a nonempty set of positive integers, X contains a least element. (b) Assume the Well-Ordering Principle...
Draw a convex quadrilateral ABCD, where the diagonals intersect at point M. Prove: If ABCD is...
Draw a convex quadrilateral ABCD, where the diagonals intersect at point M. Prove: If ABCD is a parallelogram, then M is the midpoint of each diagonal.
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 +...
a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 + 2? (leaving no remainder). Hint: you may want to use the formula: (? + ?)^3= ?^3 + 3?^2 * b + 3??^2 + ?^3. b. Use strong induction to prove that any positive integer ? (? ≥ 2) can be written as a product of primes.
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
Use mathematical induction to prove that for every integer n >=2, if a set S has...
Use mathematical induction to prove that for every integer n >=2, if a set S has n elements, then the number of subsets of S with an even number of elements equals the number of subsets of S with an odd number of elements. pleases send all detail solution.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT