Question

In: Advanced Math

show (b1+b2+...+bn)/n >= (b1b2...bn)^(1/n) Hint: do induction over k when n = 2k . Then for...

show (b1+b2+...+bn)/n >= (b1b2...bn)^(1/n)

Hint: do induction over k when n = 2k . Then for 2k−1 < n < 2k append to b1, b2, . . . , bn, 2 k − n equal numbers all equal to the arithmetic mean of the first n.

Solutions

Expert Solution


Related Solutions

How do you Interpret the meaning of the different coefficients (b0, b1, b2, b3,b4,…bn) in a...
How do you Interpret the meaning of the different coefficients (b0, b1, b2, b3,b4,…bn) in a multiple regression? (slightly different from the interpretation in simple regression)
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1...
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1 + a2 = b1 + b2 mod n, (2) a1 − a2 = b1 − b2 mod n, and (3) a1a2 = b1b2 mod n.
1.Prove that{2k+1:k∈N}∩{2k2 :k∈N}=∅. 2.Give two examples of ordered sets where the meaning of ” ≤ ”...
1.Prove that{2k+1:k∈N}∩{2k2 :k∈N}=∅. 2.Give two examples of ordered sets where the meaning of ” ≤ ” is not the same as the one used with the set of real numbers R.
Show that a graph with at least 2k vertices is k-connected if and only if for...
Show that a graph with at least 2k vertices is k-connected if and only if for any two unrelated subsets X, Y of V, such that | X | = k = | Y |, there are k foreign paths between X and Y.
(a) Let n = 2k be an even integer. Show that x = rk is an...
(a) Let n = 2k be an even integer. Show that x = rk is an element of order 2 which commutes with every element of Dn. (b) Let n = 2k be an even integer. Show that x = rk is the unique non-identity element which commutes with every element of Dn. (c) If n is an odd integer, show that the identity is the only element of Dn which commutes with every element of Dn.
Suppose f is a degree n polynomial where f(a1) = b1, f(a2) = b2, · ·...
Suppose f is a degree n polynomial where f(a1) = b1, f(a2) = b2, · · · f(an+1) = bn+1 where a1, a2, · · · an+1 are n + 1 distinct values. We will define a new polynomial g(x) = b1(x − a2)(x − a3)· · ·(x − an+1) / (a1 − a2)(a1 − a3)· · ·(a1 − an+1) + b2(x − a1)(x − a3)(x − a4)· · ·(x − an+1) / (a2 − a1)(a2 − a3)(a2 − a4)·...
Show that, in n-dimensional space, any n + 1 vectors are linearly dependent. HINT: Given n+1...
Show that, in n-dimensional space, any n + 1 vectors are linearly dependent. HINT: Given n+1 vectors, where each vector has n components, write out the equations that determine whether these vectors are linearly dependent or not. Show that these equations constitute a system of n linear homogeneous equations with n + 1 unknowns. What do you know about the possible solutions to such a system of equations?
Consider the series X∞ k=2 2k/ (k − 1)! . (a) Determine whether or not the...
Consider the series X∞ k=2 2k/ (k − 1)! . (a) Determine whether or not the series converges or diverges. Show all your work! (b) Essay part. Which tests can be applied to determine the convergence or divergence of the above series. For each test explain in your own words why and how it can be applied, or why it cannot be applied. (i) Divergence Test (ii) Direct Comparison test to X∞ k=2 2k /(k − 1). (iii) Ratio Test
Show that the curve C(t) = <a1, a2, a3>t2 + <b1, b2, b3>t + <c1, c2,...
Show that the curve C(t) = <a1, a2, a3>t2 + <b1, b2, b3>t + <c1, c2, c3> lies in a plane and find the equation for such a plane.
Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By induction way!)
Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By induction way!)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT