Question

In: Advanced Math

Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By induction way!)

Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By induction way!)

Solutions

Expert Solution


Related Solutions

Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
1a. Proof by induction: For every positive integer n, 1•3•5...(2n-1)=(2n)!/(2n•n!). Please explain what the exclamation mark...
1a. Proof by induction: For every positive integer n, 1•3•5...(2n-1)=(2n)!/(2n•n!). Please explain what the exclamation mark means. Thank you for your help! 1b. Proof by induction: For each integer n>=8, there are nonnegative integers a and b such that n=3a+5b
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a...
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a positive integer. HINT: 25 ≡ 4(mod 21)
Let G be a simple undirected graph with n vertices where n is an even number....
Let G be a simple undirected graph with n vertices where n is an even number. Prove that G contains a triangle if it has at least (n^2 / 4) + 1 edges using mathematical induction.
Question 2: A bipartite graph with 2n vertices (namely |V1| = |V2| = n) is d-regular...
Question 2: A bipartite graph with 2n vertices (namely |V1| = |V2| = n) is d-regular if and only if the degree of every vertex in V1 ∪ V2 is exactly d. Show that a d-regular bipartite graph always has a perfect matching (a matching of size n that includes all vertices). ***Remarks: All the graphs here are without self loops and parallel or anti-parallel edges. A network is a directed graph with source s and sink t and capacity...
Show that any graph with n vertices and δ(G) ≥ n/2 + 1 has a triangle.
Show that any graph with n vertices and δ(G) ≥ n/2 + 1 has a triangle.
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT