Question

In: Advanced Math

Find a particular solution to the equation 2y''+0.1y'+2y = cos(t) + 4cos(5t)

Find a particular solution to the equation

2y''+0.1y'+2y = cos(t) + 4cos(5t)

Solutions

Expert Solution

We use general principal of superposition.


Related Solutions

If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution...
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______ +______ C)...
find a particular solution to y"-2y'+y=-12.5e^t
find a particular solution to y"-2y'+y=-12.5e^t
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the...
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the method undetermined coefficients.
Find the general solution to the following equation: y''' + 3y''−4y'−6y = cos(t)
Find the general solution to the following equation: y''' + 3y''−4y'−6y = cos(t)
find the general solution for the differential equation (d^2y/dx^2)+16y= 1/cos(4x) +15x-7
find the general solution for the differential equation (d^2y/dx^2)+16y= 1/cos(4x) +15x-7
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤ ...
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤  4π e3(t−4π) t  >  4π (a)  f (t) can be written in the form g1(t)  +  g2(t)U(t − 2π)  +  g3(t)U(t − 4π) where U(t) is the Heaviside function. Enter the functions g1(t), g2(t), and g3(t), into the answer box below (in that order), separated with commas. (b) Compute the Laplace transform of  f (t).
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
Consider the differential equation 2y^2+10y+12 = t+e^t Find the complementary function and particular integral. Hence write...
Consider the differential equation 2y^2+10y+12 = t+e^t Find the complementary function and particular integral. Hence write down the full general solution
.         Given the following non-periodic signal:    x(t) = 3 e-5t cos(12t) u(t)             Find the Fourier...
.         Given the following non-periodic signal:    x(t) = 3 e-5t cos(12t) u(t)             Find the Fourier transform expression X(ω) without using Table.             Calculate the magnitude spectrum of X(ω) for ω = π/8, π/4, and π/2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT