Question

In: Advanced Math

Consider the differential equation 2y^2+10y+12 = t+e^t Find the complementary function and particular integral. Hence write...

Consider the differential equation

2y^2+10y+12 = t+e^t

Find the complementary function and particular integral. Hence write down the full general solution

Solutions

Expert Solution


Related Solutions

Find the particular integral of the differential equation d2y/dx2 + 3dy/dx + 2y = e −2x...
Find the particular integral of the differential equation d2y/dx2 + 3dy/dx + 2y = e −2x (x + 1). show that the answer is yp(x) = −e −2x ( 1/2 x2 + 2x + 2) ]
Find the general solution of the following differential equations (complementary function + particular solution). Find the...
Find the general solution of the following differential equations (complementary function + particular solution). Find the particular solution by inspection or by (6.18), (6.23), or (6.24). Also find a computer solution and reconcile differences if necessary, noticing especially whether the particular solution is in simplest form [see (6.26) and the discussion after (6.15)]. (D2+2D+17)y = 60e−4x sin 5x
Consider the differential equation y '' − 2y ' + 10y = 0;    ex cos(3x), ex sin(3x),...
Consider the differential equation y '' − 2y ' + 10y = 0;    ex cos(3x), ex sin(3x), (−∞, ∞). Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. The functions satisfy the differential equation and are linearly independent since W(ex cos(3x), ex sin(3x)) = _____ANSWER HERE______ ≠ 0 for −∞ < x < ∞. Form the general solution. y = ____ANSWER HERE_____
Given the complementary solution and the differential equation, Give the particular and the total solution for...
Given the complementary solution and the differential equation, Give the particular and the total solution for the initial conditions. Use C1 and C2 for the weights, where C1 is associated with the root with smaller magnitude. If the roots are complex, the complementary solution is the weighted sum of complex conjugate exponentials, which can be written as a constant times a decaying exponential times a cosine with phase. Use C1 for the constant and Phi for the phase. (Note: Some...
5. Consider the differential equation xy^5/2 +1+x^2y^3/2dy/dx =0 (a) Show that this differential equation is not...
5. Consider the differential equation xy^5/2 +1+x^2y^3/2dy/dx =0 (a) Show that this differential equation is not exact. (b) Find a value for the constant a such that, when you multiply the d.e. through by xa, it becomes exact. Show your working. Do NOT solve the resulting differential equation. 6. Consider the differential equation (D − 3)(D − 4)y = 0. (a) Solve this d.e., showing brief working. (b) How many solutions does this d.e. have? Justify your answer. (c) How...
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
Consider a nonhomogeneous differential equation ?′′ + 2?′ + ? = 2? sin? (a) Find any...
Consider a nonhomogeneous differential equation ?′′ + 2?′ + ? = 2? sin? (a) Find any particular solution ?? by using the method of undetermined coefficients. (b) Find the general solution. (c) Find the particular solution if ?(0) = 0 and ?′(0) = 0.
Find general solution to the differential equation x'(t) = Ax(t) + v, A = [ 2...
Find general solution to the differential equation x'(t) = Ax(t) + v, A = [ 2 −2; 2 2] , v = (2 0) .
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
find a particular solution to y"-2y'+y=-12.5e^t
find a particular solution to y"-2y'+y=-12.5e^t
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT