In: Statistics and Probability
For of a bell-shaped data with mean of 110 and standard deviation of 11, approximately
a) 0.15% of the values lies below: _________
b) 68% of the middle values lies between:______and______
c) 2.5% of the values lies above: ________
d) 0.15% of the values lies above:_________
Solution:-
Given that,
mean = = 110
standard deviation = = 11
a) Using standard normal table,
P(Z < z) = 0.15%
= P(Z < z) = 0.0015
= P(Z < -2.97) = 0.0015
z = -2.97
Using z-score formula,
x = z * +
x = -2.97 * 11 + 110
x = 77.33
0.15% of the values lies below: 77.33
b) Using standard normal table,
P( -z < Z < z) = 68%
= P(Z < z) - P(Z <-z ) = 0.68
= 2P(Z < z) - 1 = 0.68
= 2P(Z < z) = 1 + 0.68
= P(Z < z) = 1.68 / 2
= P(Z < z) = 0.84
= P(Z < 0.99) = 0.84
= z ± 0.99
Using z-score formula,
x = z * +
x = -0.99 * 11 + 110
x = 99.11
Using z-score formula,
x = z * +
x = 0.99 * 11 + 110
x = 120.89
68% of the middle values lies between: 99.11 and 120.89
c) Using standard normal table,
P(Z > z) = 2.5%
= 1 - P(Z < z) = 0.025
= P(Z < z) = 1 - 0.025
= P(Z < z ) = 0.975
= P(Z < 1.96 ) = 0.975
z = 1.96
Using z-score formula,
x = z * +
x = 1.96 * 11 + 110
x = 131.56
2.5% of the values lies above: 131.56
d) Using standard normal table,
P(Z > z) = 0.15%
= 1 - P(Z < z) = 0.0015
= P(Z < z) = 1 - 0.0015
= P(Z < z ) = 0.9985
= P(Z < 2.97 ) = 0.9985
z = 2.97
Using z-score formula,
x = z * +
x = 2.97 * 11 + 110
x = 142.67
0.15% of the values lies above: 142.67