In: Statistics and Probability
For of a bell-shaped data with mean of 115 and standard deviation of 22, approximately
a) 0.15% of the values lies below:
b) 68% of the middle values lies between: and
c) 2.5% of the values lies above:
d) 0.15% of the values lies above:
Solution :
Given that,
mean = = 115
standard deviation = = 22
Using standard normal table,
a ) P( Z < z) =0.15%
P(Z < z) = 0.0015
z =-2.97
Using z-score formula,
x = z * +
= - 2.97 *22 + 115
= 49.66
x = 49.66
P(-z < Z < z) = 68%
P(Z < z) - P(Z < z) = 0.68
2P(Z < z) - 1 = 0.68
2P(Z < z ) = 1 + 0.68
2P(Z < z) = 1.68
P(Z < z) = 1.68 / 2
P(Z < z) = 0.84
z = 0.99and z = - 0.99
Using z-score formula,
x = z * +
= 0.99*22+115
= 136.78
x = 136.78
x = z * +
=-0.99*22+115
= 93.22
x = 93.22
c ) P( Z > z) =2.5%
P(Z > z) = 0.025
1 - P( Z < z) = 0.025
P(Z < z) = 1 - 0.025
P(Z < z) = 0.975
z = 1.96
Using z-score formula,
x = z * +
= 1.96*22+115
= 158.12
x = 158.12
d ) P( Z > z) =0.15%
P(Z > z) = 0.0015
1 - P( Z < z) = 0.0015
P(Z < z) = 1 - 0.0015
P(Z < z) = 0.9985
z = 2.97
Using z-score formula,
x = z * +
= 2.97*22+115
= 180.34
x = 180.34