Question

In: Physics

This is hard!!! Thanks!! A xray photon undergoes Compton scattering from an electron initially at rest....

This is hard!!! Thanks!!

A xray photon undergoes Compton scattering from an electron initially at rest. The photon is incident from the left (-x) and is scattered backwards. a.) draw and label a sketch illustrating this collision. The initial photon energy is = 4keV. Assume that the electron energy after the collision Ee is small. b.) What is the initial photon momentum px,i in the x-direction? c.) What is the final photon momentum in the x-direction px,f after the collision? d.) Find the kinetic energy of the electrion after the collision???

Solutions

Expert Solution

As, Energy, E = P2/(2m)

Also, lambda = h/mv

where, lambda = (6.63 * 10-34 * 3 * 108)/(4000 * 1.6 * 10-19)

                        = 3.1078 * 10-10 m

Thus,   the initial photon momentum =   (6.63 * 10-34)/(3.1078 * 10-10)

                                                           = 2.133 * 10-24 kg.m/s

final photon momentum in the x-direction =   (6.63 * 10-34)/(6.2156 * 10-10)

                                                              =   1.066 * 10-24 kg.m/s

the kinetic energy of the electrion = (1.066 * 10-24)2/(2 * 9.11 * 10-31)

                                                     = 6.237 * 10-19 J


Related Solutions

A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0,...
A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0, whereas after scattering said frequency is ν. After scattering, the photon's direction of movement is opposite to its original direction (scattering of 180 degrees), and the electron moves at a relativistic speed defined as 'v'. a) the photon's wavelength before scattering was λ0=1 Angstrom. Calculate frequencies ν0 and v. b) In this paragraph, ignore the numerical data given in paragraph a) and answer using...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass m. If the photon scatters at an angle φfrom its original direction of travel, use conservation of relativistic linear momentum and conservation of relativistic energy to derive a mathematical expression for the scattered photon’s wavelength λ’.
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by colliding with a free electron. 1) Assume the photon just barely grases the electron, so that the deflect angle, θ, can be considered zero. 1)What is the wavelength of the outgoing photon after the collision? λ' = 2)What the energy of the outgoing photon? Eγ = 3)Now assume the photon deflects off at a small angle of 49o. What is the wavelength of the...
Compton ScatteringExercise 10:The equation for Compton scattering of a photon off of an electron is.?′=?+(ℎ??)(1―cos?)If using...
Compton ScatteringExercise 10:The equation for Compton scattering of a photon off of an electron is.?′=?+(ℎ??)(1―cos?)If using nm for wavelength, the quantity (h/mc) is 0.00242631nm (to a ridiculous number of sig figs, but you can round off later.) Notice how λ’ is always bigger than λ, because the scattered photon always has less energy – unless the angle is zero, which means nothing happened.A) Suppose a photon of energy 248eV scatters off of an electron in such a way as to...
An incident x-ray photon is scattered from a free electron that is initially at rest. The...
An incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180∘ from its initial direction. The wavelength of the scattered photon is 8.70×10−2 nm Part A What is the wavelength of the incident photon? λ = m Part B What is the magnitude of the momentum of the electron after the collision? P= _________ kg⋅m/s   Part C What is the kinetic energy of the electron...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 22.2° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 22.2° from a free electron that is initially at rest. The electron recoils with a speed of 2,520 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. °
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.0° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.0° from a free electron that is initially at rest. The electron recoils with a speed of 1,240 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. °
2. In a Compton scattering experiment, an x-ray photon scatters through an angle of 21.4° from...
2. In a Compton scattering experiment, an x-ray photon scatters through an angle of 21.4° from a free electron that is initially at rest. The electron recoils with a speed of 1,880 km/s. (a) Calculate the wavelength of the incident photon. (b) Calculate the angle through which the electron scatters.
Measurements of the photon energy (E) from a Compton scattering experiment show two peaks: one at...
Measurements of the photon energy (E) from a Compton scattering experiment show two peaks: one at higher energies for the source gamma rays (GR), and another at lower energies for the scattered photons (SP). Each peak is expected to obey a Gaussian distribution; e.g. for the scattered photons: SP = ASP exp(-((E-ESP)/WSP)2), where ASP is the amplitude, ESP the peak energy, and WSP the peak width; with a similar equation and set of parameters for the GR. The table (below)...
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary...
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary electron. After the collision, the electron recoils at 0.500c a) What is the energy and wavelength of the scattered photon? b) through what angle with respect to the incident direction was the photon scattered? [Hint: Me=0.511 MeV/c2 or Me=9.11x10-31 kg]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT