Question

In: Physics

A photon of wavelength 0.65037 nm strikes a free electron that is initially at rest. The...

A photon of wavelength 0.65037 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision?

Solutions

Expert Solution

When a gamma ray photon collides with an electron, Compton scattering occurs. Compton scattering is a type of elastic scattering that results in a change in the photon's wavelength called a Compton shift sure to its transfer of energy and momentum to the electron. The Compton shift depends entirely on the scattering angle, so a photon scattered in a given direction will always have the same change in its wavelength.

In Compton scattering, the change in the wavelength of the incident photon depends only on the scattering angle

where is the Compton wavelength for an electron.

This means that the final wavelength of the photon is,

  

= 6.98896 × 10-11 m

where there angle is 180° since the photon scattered backwards and the wavelength of the photon is given.

By the conservation of energy, because Compton scattering is elastic, the energy lost by the photon is gained by the electron.

   J

= 2.16 × 107 m/s


Related Solutions

An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest....
An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest. The scattered photon moves at an angle of 105° relative to its incident direction. (a) Find the initial momentum of the photon. kg·m/s (b) Find the final momentum of the photon. kg·m/s
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass m. If the photon scatters at an angle φfrom its original direction of travel, use conservation of relativistic linear momentum and conservation of relativistic energy to derive a mathematical expression for the scattered photon’s wavelength λ’.
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has...
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has a kinetic energy of 984 eV. What is the binding energy of the electron in kJ/mol? [Note that KE = 12mv2 and 1 electron volt (eV) = 1.602×10−19J.]
An X-ray photon of wavelength 0.958 nm strikes a surface. The emitted electron has a kinetic...
An X-ray photon of wavelength 0.958 nm strikes a surface. The emitted electron has a kinetic energy of 978 eV . What is the binding energy of the electron in kJ mol−1? [KE = 12mv2; 1 electron volt (eV) = 1.602×10−19J]
An incident x-ray photon is scattered from a free electron that is initially at rest. The...
An incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180∘ from its initial direction. The wavelength of the scattered photon is 8.70×10−2 nm Part A What is the wavelength of the incident photon? λ = m Part B What is the magnitude of the momentum of the electron after the collision? P= _________ kg⋅m/s   Part C What is the kinetic energy of the electron...
A 3100 TeV photon strikes an electron at rest and scatters by an angle of 120°....
A 3100 TeV photon strikes an electron at rest and scatters by an angle of 120°. Find the frequency of the reflected photon using 2.4 pm for the Compton wavelength. Also find the kinetic energy of the electron. solve it using eV not  joule. Please show all the work with all the steps. I want to learn how to slove this kind of problem because similar one will ibe n my final exam. Thank you
An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)?
  An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)? Select one: a. 20 b. 91 c. 122 d. 364 e. 138
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the incident photon is 0.0230 nm. After the collision, the electron moves at an angle α below the +x-axis, while the photon moves at an angle θ = 78.3° above the +x-axis. (For the purpose of this exercise, assume that the electron is traveling slow enough that the non-relativistic relationship between momentum and velocity can be used.) (a) What is the angle α (in degrees)?...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the incident photon is 0.0330 nm. After the collision, the electron moves at an angle α below the +x-axis, while the photon moves at an angle θ = 73.3° above the +x-axis. (For the purpose of this exercise, assume that the electron is traveling slow enough that the non-relativistic relationship between momentum and velocity can be used.) (a) What is the angle α (in degrees)?...
This is hard!!! Thanks!! A xray photon undergoes Compton scattering from an electron initially at rest....
This is hard!!! Thanks!! A xray photon undergoes Compton scattering from an electron initially at rest. The photon is incident from the left (-x) and is scattered backwards. a.) draw and label a sketch illustrating this collision. The initial photon energy is = 4keV. Assume that the electron energy after the collision Ee is small. b.) What is the initial photon momentum px,i in the x-direction? c.) What is the final photon momentum in the x-direction px,f after the collision?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT