In: Physics
2. In a Compton scattering experiment, an x-ray photon scatters through an angle of 21.4° from a free electron that is initially at rest. The electron recoils with a speed of 1,880 km/s.
(a) Calculate the wavelength of the incident photon.
(b) Calculate the angle through which the electron scatters.
let L1 is the wavelengtgh of of incident phtoton and L2 is the wavelength of the scattred photon.
a) use L2 - L1 = h/(m*c)*(1 - cos(theta))
L2 - L1 = 6.626*10^-34/(9.1*10^-31*3*10^8)*(1 - cos(21.4))
L2 - L1 = 1.6733*10^-13 ---------(1)
and
E - E' = kE_electron
h*c/L - h*c/L' = (1/2)*m*v^2
6.626*10^-34*3*10^8/L1 - 6.626*10^-34*3*10^8/L2 = (1/2)*9.1*10^-31*(1880*10^3)^2 ----(2)
on solving equation 1 and 2
we get
L1 = 1.4373*10^-10 m
L2 = 1.4390*10^-10 m
E1 = h*c/L1
= 6.626*10^-34*3*10^8/(1.4373*10^-10)
= 1.383*10^-15 J (or) 8644 eV <<<<<<<<<<<<<<<-----------------------------Answer
b) let theta is the angle made by electron motion.
Py_electron = Py_photon
m*v*sin(theta) = (h*c/L2)*sin(21.4)
sin(theta) = (h/L2)*sin(21.4)/(m*v)
= (6.626*10^-34/(1.4390*10^-10))*(sin(21.4)/(9.1*10^-31*1880*10^3))
= 0.982
theta = sin^-1(0.982)
= 79.1 degrees <<<<<<<<<<<<<<<-----------------------------Answer