Question

In: Physics

Measurements of the photon energy (E) from a Compton scattering experiment show two peaks: one at...

Measurements of the photon energy (E) from a Compton scattering experiment show two peaks: one at higher energies for the source gamma rays (GR), and another at lower energies for the scattered photons (SP). Each peak is expected to obey a Gaussian distribution; e.g. for the scattered photons: SP = ASP exp(-((E-ESP)/WSP)2), where ASP is the amplitude, ESP the peak energy, and WSP the peak width; with a similar equation and set of parameters for the GR. The table (below) shows the number of photons as a function of photon energy (in keV) from a Compton scattering measurement. Fit these data to the sum of two Gaussians to give numerical answers to the following set of six questions.

E(keV) Counts
400 101
410 174
420 271
430 393
440 430
450 825
460 952
470 1035
480 1462
490 1676
500 1997
510 2687
520 3049
530 3327
540 4034
550 4265
560 4525
570 4864
580 4793
590 4793
600 4928
610 4490
620 4345
630 4373
640 4729
650 4593
660 5136
670 5462
680 4972
690 4387
700 3491
710 2120
720 1423
730 930
740 477
750 430
760 331
770 189
780 141
790 103
800 94

1. The amplitude of the lower-energy (scattered) photons is ASP =____ counts.

2. The energy of the scattered photons is ESP =____ keV.

3.The uncertainty in the energy of the scattered photons is SSP =____ keV.

4. The width of the scattered-photon peak is WSP = _____ keV.

5. The amplitude of the higher-energy (gamma rays) is AGR =____ counts.

6. The energy of the source gamma rays is EGR =____ keV.

7. The uncertainty in the energy of the source gamma rays is SGR =____ keV.

8. The width of the source gamma ray peak is WGR = _____ keV.

Solutions

Expert Solution


Related Solutions

In a Compton scattering experiment, an incident photon of energy 295.00 kev scatters off a loosely...
In a Compton scattering experiment, an incident photon of energy 295.00 kev scatters off a loosely bound electron resulting in the scattered photon to have an energy of 159.00 kev. a. Determine the scattering angle for the scattered photon, relative to the original direction of travel, and b. Determine the energy of the scattered electron. c. If the photon is back scattered (θ = 180°), determine the momentum of the scattered electron, in units of (kg m/s).
In a Compton scattering experiment, an x-ray photon scatters through an angle of 22.2° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 22.2° from a free electron that is initially at rest. The electron recoils with a speed of 2,520 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. °
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.0° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.0° from a free electron that is initially at rest. The electron recoils with a speed of 1,240 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. °
2. In a Compton scattering experiment, an x-ray photon scatters through an angle of 21.4° from...
2. In a Compton scattering experiment, an x-ray photon scatters through an angle of 21.4° from a free electron that is initially at rest. The electron recoils with a speed of 1,880 km/s. (a) Calculate the wavelength of the incident photon. (b) Calculate the angle through which the electron scatters.
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary...
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary electron. After the collision, the electron recoils at 0.500c a) What is the energy and wavelength of the scattered photon? b) through what angle with respect to the incident direction was the photon scattered? [Hint: Me=0.511 MeV/c2 or Me=9.11x10-31 kg]
A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0,...
A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0, whereas after scattering said frequency is ν. After scattering, the photon's direction of movement is opposite to its original direction (scattering of 180 degrees), and the electron moves at a relativistic speed defined as 'v'. a) the photon's wavelength before scattering was λ0=1 Angstrom. Calculate frequencies ν0 and v. b) In this paragraph, ignore the numerical data given in paragraph a) and answer using...
This is hard!!! Thanks!! A xray photon undergoes Compton scattering from an electron initially at rest....
This is hard!!! Thanks!! A xray photon undergoes Compton scattering from an electron initially at rest. The photon is incident from the left (-x) and is scattered backwards. a.) draw and label a sketch illustrating this collision. The initial photon energy is = 4keV. Assume that the electron energy after the collision Ee is small. b.) What is the initial photon momentum px,i in the x-direction? c.) What is the final photon momentum in the x-direction px,f after the collision?...
Compton ScatteringExercise 10:The equation for Compton scattering of a photon off of an electron is.?′=?+(ℎ??)(1―cos?)If using...
Compton ScatteringExercise 10:The equation for Compton scattering of a photon off of an electron is.?′=?+(ℎ??)(1―cos?)If using nm for wavelength, the quantity (h/mc) is 0.00242631nm (to a ridiculous number of sig figs, but you can round off later.) Notice how λ’ is always bigger than λ, because the scattered photon always has less energy – unless the angle is zero, which means nothing happened.A) Suppose a photon of energy 248eV scatters off of an electron in such a way as to...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by colliding with a free electron. 1) Assume the photon just barely grases the electron, so that the deflect angle, θ, can be considered zero. 1)What is the wavelength of the outgoing photon after the collision? λ' = 2)What the energy of the outgoing photon? Eγ = 3)Now assume the photon deflects off at a small angle of 49o. What is the wavelength of the...
1) What is Compton scattering? 2) Derive an equation for the wavelength of a photon scattered...
1) What is Compton scattering? 2) Derive an equation for the wavelength of a photon scattered from a nearly free electron in some target material. 3) Why is Compton scattering not observed for visible wavelengths?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT