Question

In: Advanced Math

Let F be a subfield of a field E, and let u in E be given....

Let F be a subfield of a field E, and let u in E be given. Prove that u is algebraic over F if and only if [F(u):F]

[F(u):F] is finite

Solutions

Expert Solution

Please Rate this answer Thank you ?


Related Solutions

Let E be an extension field of a finite field F, where F has q elements....
Let E be an extension field of a finite field F, where F has q elements. Let a in E be an element which is algebraic over F with degree n. Show that F(a) has q^n elements. Please provide an unique answer and motivate all steps carefully. I also prefer that the solution is provided as written notes.
Let E/F be a field extension. Let a,b be elements elements of E and algebraic over...
Let E/F be a field extension. Let a,b be elements elements of E and algebraic over F. Let m=[Q(a):Q] and n=[Q(b):Q]. Assume that gcd(m,n)=1. Determine the basis of Q(a,b) over Q.
Problem 3. Let F ⊆ E be a field extension. (i) Suppose α ∈ E is...
Problem 3. Let F ⊆ E be a field extension. (i) Suppose α ∈ E is algebraic of odd degree over F. Prove that F(α) = F(α^2 ). Hints: look at the tower of extensions F ⊆ F(α^2 ) ⊆ F(α) and their degrees. (ii) Let S be a (possibly infinite) subset of E. Assume that every element of S is algebraic over F. Prove that F(S) = F[S]
Let F be a field and let φ : F → F be a ring isomorphism....
Let F be a field and let φ : F → F be a ring isomorphism. Define Fix φ to be Fix φ = {a ∈ F | φ(a) = a}. That is, Fix φ is the set of all elements of F that are fixed under φ. Prove that Fix φ is a field.   (b) Define φ : C → C by φ(a + bi) = a − bi. Take for granted that φ is a ring isomorphism (we...
Let F be a vector field. Find the flux of F through the given surface. Assume...
Let F be a vector field. Find the flux of F through the given surface. Assume the surface S is oriented upward. F = eyi + exj + 24yk; S that portion of the plane x + y + z = 6 in the first octant.
Let (F, <) be an ordered field, let S be a nonempty subset of F, let...
Let (F, <) be an ordered field, let S be a nonempty subset of F, let c ∈ F, and for purposes of this problem let cS = {cx | x ∈ S}. (Do not use this notation outside this problem without defining what you mean by the notation.) Assume that c > 0. (i) Show that an element b ∈ F is an upper bound for S if and only if cb is an upper bound for cS. (ii)...
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
Let R be a UFD and let F be a field of fractions for R. If...
Let R be a UFD and let F be a field of fractions for R. If f(α) = 0, where f ∈ R [x] is monic and α ∈ F, show that α ∈ R NOTE: A corollary is the fact that m ∈ Z and m is not an nth power in Z, then n√m is irrational.
Show that {a + b√3 | a, b ∈ Q} is a field (a subfield of...
Show that {a + b√3 | a, b ∈ Q} is a field (a subfield of the field R), but {a + b√3 | a, b ∈ Z} is not a field.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT