In: Computer Science
NOTE THAT
((This should be done by R studio !))
Q: Upload your data as a CSV in R studio, then do
any
cleaning or convert needed for example convert the date in your
table
from character to date and NA identifiers . After
do all these, run a summary statistics
| 
 Year  | 
 REX  | 
 OilP  | 
 Food exports (% of merchandise exports)  | 
 Ores and metals exports (% of merchandise exports)  | 
| 
 1980  | 
 239.5433424  | 
 35.52  | 
 0.09638294  | 
 0.060083757  | 
| 
 1981  | 
 240.3102173  | 
 34  | 
 0.094079554  | 
 0.024360528  | 
| 
 1982  | 
 245.3895131  | 
 32.38  | 
 0.128489839  | 
 0.025668368  | 
| 
 1983  | 
 242.8677506  | 
 29.04  | 
 ..  | 
 ..  | 
| 
 1984  | 
 238.0284197  | 
 28.2  | 
 ..  | 
 ..  | 
| 
 1985  | 
 221.878717  | 
 27.01  | 
 0.259787311  | 
 0.116943755  | 
| 
 1986  | 
 169.6457184  | 
 13.53  | 
 ..  | 
 ..  | 
| 
 1987  | 
 144.1934823  | 
 17.73  | 
 ..  | 
 ..  | 
| 
 1988  | 
 134.5212315  | 
 14.24  | 
 1.371078529  | 
 0.732151804  | 
| 
 1989  | 
 136.0536024  | 
 17.31  | 
 1.374888969  | 
 0.834330299  | 
| 
 1990  | 
 125.5311345  | 
 22.26  | 
 0.713126234  | 
 0.491007478  | 
| 
 1991  | 
 125.8812467  | 
 18.62  | 
 0.526384845  | 
 0.242750346  | 
| 
 1992  | 
 118.7733668  | 
 18.44  | 
 1.074388363  | 
 0.548851562  | 
| 
 1993  | 
 122.2521688  | 
 16.33  | 
 0.982275388  | 
 0.429968062  | 
| 
 1994  | 
 117.8952881  | 
 15.53  | 
 0.673955645  | 
 0.346686956  | 
| 
 1995  | 
 114.1213899  | 
 16.86  | 
 0.810242733  | 
 0.567217625  | 
| 
 1996  | 
 116.3114665  | 
 20.29  | 
 0.632336949  | 
 0.304958406  | 
| 
 1997  | 
 121.4661302  | 
 18.86  | 
 ..  | 
 ..  | 
| 
 1998  | 
 127.1948915  | 
 12.28  | 
 1.114818605  | 
 0.507089276  | 
| 
 1999  | 
 121.9490893  | 
 17.44  | 
 0.930990348  | 
 0.262574488  | 
| 
 2000  | 
 123.200674  | 
 27.6  | 
 0.538501429  | 
 0.147164016  | 
| 
 2001  | 
 125.2424379  | 
 23.12  | 
 0.558465111  | 
 0.201693533  | 
| 
 2002  | 
 121.5455166  | 
 24.36  | 
 0.628539417  | 
 0.223275991  | 
| 
 2003  | 
 111.1523893  | 
 28.1  | 
 0.835851768  | 
 0.182707717  | 
| 
 2004  | 
 103.4682918  | 
 36.05  | 
 0.7405123  | 
 0.172800798  | 
| 
 2005  | 
 100.5070052  | 
 50.59  | 
 0.620831971  | 
 0.137293785  | 
| 
 2006  | 
 98.93290899  | 
 61  | 
 0.64203501  | 
 0.219532433  | 
| 
 2007  | 
 95.96813741  | 
 69.04  | 
 0.838923226  | 
 0.283587719  | 
| 
 2008  | 
 93.62494305  | 
 94.1  | 
 0.744029125  | 
 0.221986187  | 
| 
 2009  | 
 100.1652448  | 
 60.86  | 
 1.407633083  | 
 0.232499732  | 
| 
 2010  | 
 100  | 
 77.38  | 
 1.155876888  | 
 0.154654215  | 
| 
 2011  | 
 96.57013945  | 
 107.46  | 
 0.898301922  | 
 0.122271232  | 
| 
 2012  | 
 99.61967144  | 
 109.45  | 
 0.860627792  | 
 0.138455596  | 
| 
 2013  | 
 102.3680362  | 
 105.87  | 
 0.878931429  | 
 0.403127249  | 
| 
 2014  | 
 105.3894897  | 
 96.29  | 
 1.006265279  | 
 0.769034983  | 
| 
 2015  | 
 118.5851177  | 
 49.49  | 
 1.798068624  | 
 1.307540253  | 
R ONLY !!
Below is the R script:-
data=read.delim("clipboard")#import data from excel to R
attach(data)
data#display data frame
mydata=na.omit(data)#omit NA data
mydata
is.na(mydata)#checks if NA data present
summary(mydata)#gives summary of data
Thank you.