Question

In: Physics

A 1.0 kg block of ice is initially at a temperature of ?5

A 1.0 kg block of ice is initially at a temperature of ?5

Solutions

Expert Solution

(a)
Specific heat of ice = 2.11 J/g/deg C
Specific heat of water = 4.184 J/g/deg C (both from Wikipedia)

1 kg of ice requires 2110 J to raise its temperature by 1 deg C

To warm the ice to melting point requires
5 * 2110 = 10550 J

1 kg of ice absorbs 80 kcal or 80 * 4184 J in changing from ice to water at the same temperature
= 334720 J

Total energy required to warm the ice and melt it to water at 0 deg C
= 334720 + 10550 = 345270 J

Total energy added to the ice is 5.7 * 10^5
= 580000 J

Excess energy available to warm the water from 0 deg C
= 580000 - 345270
= 234730 J

This excess energy will warm the water to
234730 / 4184 = 56.1 deg C

(b)
If the energy is increased by a factor, to achieve the same final temperature, the mass must increase by the same factor.

For example, if we supply twice as much heat, half the heat would raise 1 kg to 56.1 deg and the other half of the heat would do the same for a second 1 kg mass of ice.

The mass of ice must be increased by a factor of 5


Related Solutions

IP A 1.4-kg block of ice is initially at a temperature of -5.0 ∘C. Part A...
IP A 1.4-kg block of ice is initially at a temperature of -5.0 ∘C. Part A If 2.5×105 J of heat are added to the ice, what is the final temperature of the system? Part B Find the amount of ice, if any, that remains.
A block of mass 5 kg is sitting on a frictionless surface. The block initially has...
A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.   What is the Initial momentum of the block? kg m/s Tries 0/2 What is the Initial Kinetic Energy of the block? J Tries 0/2 What is the change in momentum of the block?   Kg m/s Tries 0/2 What is the final momentum of the block? kg m/s Tries 0/2...
A block of ice, mass 3.20 kg and initial temperature of -8 oC, is placed in...
A block of ice, mass 3.20 kg and initial temperature of -8 oC, is placed in an insulating container. 5.00 kg of water at temperature 13 oC, is added to the container. The water and ice exchange heat, but no other heat flows into or out of the container. In the process of the water and ice reaching equilibrium, how much ice melts? Give your answer in kg to three digits. Note: It is possible that the answer is zero.
a) A block ice of mass 1kg has a temperature of -5°C and gets placed in...
a) A block ice of mass 1kg has a temperature of -5°C and gets placed in Calorimeter A, filled with 10l of water at a temperature of 15°C. Determine the temperature Teq at equilibrium. b) An identical block of ice gets placed in calorimeter B, filled with 2l of water at a temperature of 15°C. Determine the amount of ice, Mice, left at equilibrium. Cwater = 4190J/kg*K, Cice = 2100J/kg*K, Lf= 3.34*10^5 J/kg
The 1.0 kg block in the figure is tied to the wall with a rope. It...
The 1.0 kg block in the figure is tied to the wall with a rope. It sits on top of the 2.0 kg block. The lower block is pulled to the right with a tension force of 20 N. The coefficient of kinetic friction at both the lower and upper surfaces of the 2.0 kg block is μk = 0.43. What is the tension in the rope holding the 1.0 kg block to the wall? What is the acceleration of...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part A - Final Temperature What is the final temperature of the system? (If I've set the problem up right, you should be given numbers such that all of the ice has melted.)   Tf   =    ∘C    Part B - Entropy of Warming Ice What is the change in entropy of the ice, as it warms up before melting? S = J/K Part C - Entropy...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially at rest at the edge of a frictionless table of height h=0.90 m. The bullet remains in the block and the block lands a distance d=0.68 m from the bottom of the table. Picture1 a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic Energy during the collision. ΔK = J.
A 40 kg block of ice begins at -40°C. The specific heat of ice is 2090...
A 40 kg block of ice begins at -40°C. The specific heat of ice is 2090 J/kg*C and the specific heat of water is 4186 J/kg*C. The latent heat of fusion of water is 3.3×10^5 j/kg and the latent heat of vaporization is 2.3×10^6 j/kg. A) How much energy is required to heat ice to the melting point, 0°C?B) How much energy is required to heat the ice from -50°C to the melting point and melt ice?C) How much energy...
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0 C. Energy is added until the ice has just melted. The temperature at the boundary where heat transfer occurs is taken to be the system temperature during the process. The enthalpy of melting ice is 333.5 kJ/kg. Consider the following processes used to melt the ice. a.) Heat is added to from the environment at 20 C. Determine the entropy flux and the total...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT