In: Finance
Assume you take out a loan that you will make payments, once per year, for four years. Complete the table assuming the loan is for $10,000 and the interest rate on the loan is 4.25%.
| 
 Year  | 
 Beginning Balance  | 
 Total Payment  | 
 Interest Paid  | 
 Principal Paid  | 
 Ending Balance  | 
| 
 1  | 
|||||
| 
 2  | 
|||||
| 
 3  | 
|||||
| 
 4  | 
 | 
| Year | Beginning Balance | Total Payment | Interest Paid | Principal Paid | Ending Balance | |||
| 1 | $ 10,000.00 | $ 2,771.15 | $ 425.00 | $ 2,346.15 | $ 7,653.85 | |||
| 2 | $ 7,653.85 | $ 2,771.15 | $ 325.29 | $ 2,445.86 | $ 5,207.99 | |||
| 3 | $ 5,207.99 | $ 2,771.15 | $ 221.34 | $ 2,549.81 | $ 2,658.18 | |||
| 4 | $ 2,658.18 | $ 2,771.15 | $ 112.97 | $ 2,658.18 | $ -0.00 | |||
| working: | ||||||||
| Annual payment | = | Loan Amount/Present Value of annuity of 1 | ||||||
| = | $ 10,000 | / | 3.60861 | |||||
| = | $ 2,771.15 | |||||||
| Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||
| = | (1-(1+0.0425)^-4)/0.0425 | i | 0.0425 | |||||
| = | 3.60861 | n | 4 | |||||