In: Finance
Consider the following information:
Rate of Return if State Occurs | ||||
State of Economy | Probability of State of Economy |
Stock A | Stock B | Stock C |
Boom | 0.72 | 0.29 | 0.31 | 0.15 |
Bust | 0.28 | 0.11 | 0.11 |
-0.07 |
a) What is the expected return on an equally weighted portfolio of these three stocks?
b) What is the variance of a portfolio invested 20 percent each in A and B and 60 percent in C?
a
Stock A | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.72 | 29 | 20.88 |
Bust | 0.28 | 11 | 3.08 |
Expected return %= | sum of weighted return = | 23.96 | |
Standard deviation of Stock A% | |||
Stock B | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.72 | 31 | 22.32 |
Bust | 0.28 | 11 | 3.08 |
Expected return %= | sum of weighted return = | 25.4 | |
Standard deviation of Stock B% | |||
Stock C | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.72 | 15 | 10.8 |
Bust | 0.28 | -7 | -1.96 |
Expected return %= | sum of weighted return = | 8.84 |
Expected return%= | Wt Stock A*Return Stock A+Wt Stock B*Return Stock B+Wt Stock C*Return Stock C |
Expected return%= | 0.3333*23.96+0.3333*25.4+0.3333*8.84 |
Expected return%= | 19.4 |
b
Stock A | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Boom | 0.72 | 29 | 20.88 | 5.04 | 0.001828915 |
Bust | 0.28 | 11 | 3.08 | -12.96 | 0.004702925 |
Expected return %= | sum of weighted return = | 23.96 | Sum=Variance Stock A= | 0.00653 | |
Standard deviation of Stock A% | =(Variance)^(1/2) | 8.08 | |||
Stock B | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Boom | 0.72 | 31 | 22.32 | 5.6 | 0.00225792 |
Bust | 0.28 | 11 | 3.08 | -14.4 | 0.00580608 |
Expected return %= | sum of weighted return = | 25.4 | Sum=Variance Stock B= | 0.00806 | |
Standard deviation of Stock B% | =(Variance)^(1/2) | 8.98 | |||
Stock C | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
Boom | 0.72 | 15 | 10.8 | 6.16 | 0.002732083 |
Bust | 0.28 | -7 | -1.96 | -15.84 | 0.007025357 |
Expected return %= | sum of weighted return = | 8.84 | Sum=Variance Stock C= | 0.00976 | |
Standard deviation of Stock C% | =(Variance)^(1/2) | 9.88 | |||
Covariance Stock A Stock B: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Boom | 0.72 | 5.0400 | 5.6 | 0.002032128 | |
Bust | 0.28 | -12.96 | -14.4 | 0.005225472 | |
Covariance=sum= | 0.0072576 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | 1 | |||
Covariance Stock A Stock C: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
Boom | 0.72 | 5.04 | 6.16 | 0.002235341 | |
Bust | 0.28 | -12.96 | -15.84 | 0.005748019 | |
Covariance=sum= | 0.00798336 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | 1 | |||
Covariance Stock B Stock C: | |||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
Boom | 0.72 | 5.6 | 6.16 | 0.002483712 | |
Bust | 0.28 | -14.4 | -15.84 | 0.006386688 | |
Covariance=sum= | 0.0088704 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | 1 | |||
Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) |
Variance | =0.2^2*0.08082^2+0.2^2*0.0898^2+0.6^2*0.09878^2+2*(0.2*0.2*0.08082*0.0898*1+0.2*0.6*0.0898*0.09878*1+0.2*0.6*1*0.08082*0.09878) |
Variance | 0.008722 |