In: Statistics and Probability
CH 10 Correlation and regression
1) All these pages after filled boxes (part e)
Sugar Consumption X 2.1 5 6.3 6.5 7.7 8.7 11.6 Cavities Y 0.59 1.51 1.55 1.7 2.18 2.1 2.73
a. Enter the above data into an excel spreadsheet.
b. Use the CORREL function and find the Linear Correlation Coefficient r (five decimal digits) and write in box below
Linear Correlation Coefficient r =
c. Use the Regression
dialog box and find the regression equation
d. Fill out the boxes
below
Regression Equation:
Using your regression equation above how many cavities would you
expect a child in this age range to have if they consumed 13.0 kg
of sugar annually?
( b )
Using CORREL function in Excel we get
Linear Correlation Coefficient r = 0.97905
( c )
Using Regression in Excel we get output as
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.979049237 | |||||
R Square | 0.958537408 | |||||
Adjusted R Square | 0.95024489 | |||||
Standard Error | 0.149958042 | |||||
Observations | 7 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 2.599334357 | 2.599334 | 115.5906 | 0.00012066 | |
Residual | 5 | 0.112437072 | 0.022487 | |||
Total | 6 | 2.711771429 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 0.251974611 | 0.151776025 | 1.660174 | 0.157773 | -0.13817808 | 0.642127303 |
X | 0.221214566 | 0.020575595 | 10.75131 | 0.000121 | 0.168323315 | 0.274105818 |
From the above output
y = 0.2519746 + 0.2212146 x
then
y = 0.2519746 + 0.2212146 ( 13 )
= 3.1277644
y = 3.1277644