Question

In: Advanced Math

A topological space X is zero − dimensional if it has a basis B consisting of...

A topological space X is zero − dimensional if it has a basis B consisting of open sets which are simultaneously closed. (a) Prove that the set C = {0, 1}N with the product topology is zero-dimensional. (b) Prove that if (X, d) is a metric space for which |X| < |R|, that is the cardinality of X is less than that of R, then X is zero-dimensional.

Solutions

Expert Solution


Related Solutions

A topological space X is zero − dimensional if it has a basis B consisting of...
A topological space X is zero − dimensional if it has a basis B consisting of open sets which are simultaneously closed. (a) Prove that the set C = {0, 1}N with the product topology is zero-dimensional. (b) Prove that if (X, d) is a metric space for which |X| < |R|, that is the cardinality of X is less than that of R, then X is zero-dimensional.
If X is any topological space, a subset A ⊆ X is compact (in the subspace...
If X is any topological space, a subset A ⊆ X is compact (in the subspace topology) if and only if every cover of A by open subsets of X has a finite subcover.
b)Prove that every metric space is a topological space. (c) Is the converse of part (b)...
b)Prove that every metric space is a topological space. (c) Is the converse of part (b) true? That is, is every topological space a metric space? Justify your answer
Recall the following definition: For X a topological space, and for A ⊆ X, we define...
Recall the following definition: For X a topological space, and for A ⊆ X, we define the closure of A as cl(A) = ⋂{B ⊆ X : B is closed in X and A ⊆ B}. Let x ∈ X. Prove that x ∈ cl(A) if and only if every neighborhood of x contains a point from A. You may not use any definitions of cl(A) other than the one given.
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X...
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X is called a topology on the set X if the following properties are satisfied: (1) emptyset ∈ O and X ∈ O. (2) For all A,B ∈ O, we have A∩B ∈ O (stability under intersection). (3) For all index sets I, and for all collections {Ui}i∈I of elements of O (i.e., Ui ∈ O for all i ∈ I), we have U i∈I...
a.) Find a basis for the row space of matrix B. b.) Find a basis for the column space of matrix B.
For the given matrix B= 1 1 1 3 2 -2 4 3 -1 6 5 1 a.) Find a basis for the row space of matrix B. b.) Find a basis for the column space of matrix B. c.)Find a basis for the null space of matrix B. d.) Find the rank and nullity of the matrix B.
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?)....
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?). Show the following are equivalent: (a) The matrix for ? is upper triangular. (b) ?(??) ∈ Span(?1,...,??) for all ?. (c) Span(?1,...,??) is ?-invariant for all ?. please also explain for (a)->(b) why are all the c coefficients 0 for all i>k? and why T(vk) in the span of (v1,.....,vk)? i need help understanding this.
Let A be a closed subset of a T4 topological space. Show that A with the...
Let A be a closed subset of a T4 topological space. Show that A with the relative topology is a normal T1
Suppose a 2-dimensional space is spanned by the coordinates (v, x) and that the line element...
Suppose a 2-dimensional space is spanned by the coordinates (v, x) and that the line element is defined by: ds2 = -xdv2 + 2dvdx i) Assuming that the nature and properties of the spacetime line element still hold, show that a particle in the negative x-axis can never venture into the positive x-axis. That is, show that a particle becomes trapped if it travels into the negative x-axis. ii) Draw a representative light cone that illustrates how a particle is...
Topological Question: Show that a countable product of a metrizable space is metrizable. (In the product...
Topological Question: Show that a countable product of a metrizable space is metrizable. (In the product Topology of course) ie) Show that d is a metric on X that induces the product topology on X
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT