In: Statistics and Probability
Improvement in the quality (expressed in % of units that fail and require free service under warranty) was regressed on the number hours spent on the task. In the table below, you see the results of a regression analysis.
| 
 Regression: Quality  | 
||
| 
 Intercept  | 
 Hours  | 
|
| 
 coefficient  | 
 4.55770072  | 
 -1.02936616  | 
| 
 std error of coef  | 
 0.80943691  | 
 0.13291009  | 
| 
 t-ratio  | 
 5.6307  | 
 7.7448  | 
| 
 p-value  | 
 0.0002%  | 
 0.0000%  | 
| 
 Standard error of regression  | 
 2.42986326  | 
|
| 
 R-squared  | 
 60.60%  | 
|
| 
 Adjusted R-squared  | 
 59.59%  | 
|
| 
 number of observations  | 
 41  | 
|
| 
 residual degrees of freedom  | 
 39  | 
|
a)
Improvement in quality will decrease by -1.02936616 unit with increase of each extra hour
b)
n =   41      
           
alpha,α =    0.05      
           
estimated slope=   -1.02936616  
           
   
std error =    0.13291009      
           
          
           
Df = n-2 =   39      
           
t critical value =    2.0227   [excel function:
=t.inv.2t(α,df) ]          
   
          
           
margin of error ,E = t*std error =    2.0227  
*   0.13291009   =  
0.2688  
          
           
95%   confidence interval is ß1 ± E   
           
   
lower bound = estimated slope - margin of error =   
-1.02936616   -   0.2688  
=   -1.2982  
upper bound = estimated slope + margin of error =   
-1.02936616   +   0.2688  
=   -0.7605  
c)
p-value =    0.0000   
decision:   p value < α , so, reject the null
hypothesis      
Slope is significant
d)
n =   41      
           
alpha,α =    0.01      
           
estimated slope=   -1.02936616  
           
   
std error =    0.13291009      
           
          
           
Df = n-2 =   39      
           
t critical value =    2.7079   [excel function:
=t.inv.2t(α,df) ]          
   
          
           
margin of error ,E = t*std error =    2.7079  
*   0.13291009   =  
0.3599  
          
           
99%   confidence interval is ß1 ± E   
           
   
lower bound = estimated slope - margin of error =   
-1.02936616   -   0.3599  
=   -1.3893  
upper bound = estimated slope + margin of error =   
-1.02936616   +   0.3599  
=   -0.6695  
THANKS
revert back for doubt
please upvote