In: Finance
How much money must you save every month for the next 45 years if you plan on retiring with $879 a month for what you expect is 11 years before you die. The intrest rate at the bank is 7% per year
Saving every month should be $ 21.29
Step-1:Present value of monthly cash flow | |||||||||
Present value | = | Monthly cash flow | * | Present value of annuity of 1 | |||||
= | $ 879.00 | * | 91.87713 | ||||||
= | $ 80,760.00 | ||||||||
Working: | |||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||
= | (1-(1+0.005833)^-132)/0.005833 | i | = | 7%/12 | = | 0.005833 | |||
= | 91.877134 | n | = | 11*12 | = | 132 | |||
Step-2:Calculation of saving every month | |||||||||
Saving every month | = | Future Value of monthly saving | / | Future Value of annuity of 1 | |||||
= | $ 80,760.00 | / | 3792.595 | ||||||
= | $ 21.29 | ||||||||
Working: | |||||||||
Future Value of annuity of 1 | = | (((1+i)^n)-1)/i | Where, | ||||||
= | (((1+0.005833)^540)-1)/0.005833 | i | = | 7%/12 | = | 0.005833 | |||
= | 3792.59468 | n | = | 45*12 | = | 540 |