In: Finance
You are trying to decide how much to save for retirement. Assume you plan to save $4,500 per year with the first investment made one year from now. You think you can earn 5.5% per year on your investments and you plan to retire in 26 years, immediately after making your last $4,500 investment.
a. How much will you have in your retirement account on the day you retire?
b. If, instead of investingv$4,500 per year, you wanted to make one lump-sum investment today for your retirement that will result in the same retirement saving, how much would that lump sum need to be?
c. If you hope to live for 24 years in retirement, how much can you withdraw every year in retirement (starting one year after retirement) so that you will just exhaust your savings with the 24th withdrawal (assume your savings will continue to earn 5.5% in retirement)?
d. If, instead, you decide to withdraw $49,000per year in retirement (again with the first withdrawal one year after retiring), how many years will it take until you exhaust your savings? (Use trial-and-error, a financial calculator: solve for "N", or Excel: function NPER)
e. Assuming the most you can afford to save is $ 900 per year, but you want to retire with $1000 in your investment account, how high of a return do you need to earn on your investments? (Use trial-and-error, a financial calculator: solve for the interest rate, or Excel: function RATE)
a]
Future value of annuity = P * [(1 + r)n - 1] / r,
where P = periodic payment. This is $4,500
r = periodic rate of interest. This is 5.5%
n = number of periods. This is 26
Future value of annuity = $4,500 * [(1 + 5.5%)26 - 1] / 5.5%
Future value of annuity = $247,346.91
b]
present value = future value / (1 + interest rate)number of years
present value = $247,346.91 / (1 + 5.5%)26
present value = $61,481.23
c]
PV of annuity = P * [1 - (1 + r)-n] / r,
where P = periodic payment. We need to calculate this.
r = interest rate per period. This is 5.5%
n = number of periods. This is 24
$247,346.91 = P * [1 - (1 + 5.5%)-24] / 5.5%
P = $247,346.91 * 5.5% / [1 - (1 + 5.5%)-24]
P = $18,807.22
d]
Number of years is calculated using NPER function in Excel :
rate = 5.5%
pmt = -49000
pv = 247346.91
NPER is calculated to be 6.07 years
e]
Return required to be earned is calculated using RATE function in Excel :
nper = 26
pmt = -900
pv = 0
fv = 1000000
RATE is calculated to be 23.98%
RATE is calculated to be 23.98%
RATE is calculated to be 23.98%