Question

In: Advanced Math

Consider a forced spring-mass equation of the form x′′ + x = cos(ωt) with initial conditions...

Consider a forced spring-mass equation of the form x′′ + x = cos(ωt) with initial conditions x(0) = 1 and x′(0) = 0.
a) Suppose ω doesnt = 1, find the solution to the IVP.

b)If ω = 1, find the solution to the IVP.

c)In which of the two cases does the phenomenon of pure resonance occur? Ex- plain your answer.

d)Verify that with ω = 9/10, x(t) = 100/19 (cos( 9t/10 ) − (81/100) cos t) solves the IVP.

e) Recall the trig identity cos(α) − cos(β) = −2 sin( (α+β)/2 ) sin( (α−β)/2 ). Observe that x(t) ≈ 100/19 (cos( 9t/10 ) − cos t). Use this last form and the trig identity above to approximate x(t) by a product of two sin functions. Make a sketch of the graph, carefully accounting for the periods of the two functions. What would you call the long-term behavior of this solution??

Solutions

Expert Solution


Related Solutions

A mass-spring-dashpot system is described by my′′ + cy′ + ky = Fo cos ωt, see...
A mass-spring-dashpot system is described by my′′ + cy′ + ky = Fo cos ωt, see §3.6 Eq. (17). This second-order differential equation has been used in simulations, such as this one at the PhET site: https://phet.colorado.edu/en/simulation/legacy/resonance. For m = 2.53kg, c = 0.502N/(m/s), k = 97.2N/m, Fo = 97.2×0.5N = 48.6N,and ω = 2.6, the equation becomes 2.53y′′ + 0.502y′ + 97.2y = 48.6 cos(ωt) ....................... (1) (a) Given the initial value y(0) = 2.20, y′(0) = 0, solve...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0 . b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in...
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0...
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0 ≤ x ≤ 2 and t ≥ 0. ∂ 2u ∂t2 = 0.01 ∂ 2u ∂x2 (0 ≤ x ≤ 2, t ≥ 0) (1) ∂u ∂x(t, 0) = 0 and ∂u ∂x(t, 2) = 0 (2) u(0, x) = f(x) = x if 0 ≤ x ≤ 1 1 if 1 ≤ x ≤ 2. (a) Compute the coefficients a0, a1, a2, ....
Consider the undamped forced harmonic oscillator with mass 1 kg, damping coefficient 0, spring constant 4,...
Consider the undamped forced harmonic oscillator with mass 1 kg, damping coefficient 0, spring constant 4, and external force h(t) = 3cos(t). The mass is initially at rest in the equilibrium position. You must understand that you can model this as: y’’ = -4y +3cost; y(0) = 0; y’(0) = 0. (5pts) Using the method of Laplace transforms, solve this initial value problem. Check your solution solves the IVP. (4pts) Be sure to check that your solution satisfies both the...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant 3, and external force in the form of an instantaneous hammer strike (Section 6.4) at time t = 4 seconds. The mass is initially displaced 2 meters in the positive direction and an initial velocity of 1 m/s is applied. Model this situation with an initial value problem and solve it using the method of Laplace transforms.
6. Consider the one dimensional wave equation with boundary conditions and initial conditions: PDE : utt...
6. Consider the one dimensional wave equation with boundary conditions and initial conditions: PDE : utt = c 2 uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x), ut(x, 0) = g(x) a) Suppose c = 1, L = 1, f(x) = 180x 2 (1 − x), and g(x) = 0. Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the...
*PLEASE SHOW ALL WORK* Consider a damped, forced mass/spring system. Let t denote time (in seconds)...
*PLEASE SHOW ALL WORK* Consider a damped, forced mass/spring system. Let t denote time (in seconds) and let x(t) denote the position (in meters) of the mass at time t, with x = 0 corresponding to the equilibrium position. Suppose the mass m = 1 kg, the damping constant c = 3 N·s/m, the spring constant k = 2 N/m, the external force is F (t) = 20 cos(2t), the initial position x(0) = 1 m, and the initial velocity...
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the...
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the method undetermined coefficients.
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0)...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0) = 0 ut(x, 0) = 0.1x(π − x) u(0,t) = u(π,t) = 0 (a) Solve the problem using the separation of variables. (b) Solve the problem using D’Alembert’s solution. Hint: I would suggest doing an odd expansion of ut(x,0) first; the final solution should be exactly like the one in (a).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT