In: Operations Management
1- solve the following LPP :
Minimize Z = 12x + 3y
Subject to 4x + 6y > 24,000
X + y > 5,000
8x + 2y > 16,000
And x> 0, y> 0
I've used Graphical method. If you need
any other method just comment below I will change it straight
away.
PLEASE CONSIDER LIKING THIS ANSWER.
THANK YOU!
Solution:
Problem is
|
||||||||||||||||||||||||
subject to | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
and x1,x2≥0; |
Hint to draw constraints
1. To draw constraint 4x1+6x2≥24000→(1)
Treat it as 4x1+6x2=24000
When x1=0 then x2=?
⇒4(0)+6x2=24000
⇒6x2=24000
⇒x2=240006=4000
When x2=0 then x1=?
⇒4x1+6(0)=24000
⇒4x1=24000
⇒x1=240004=6000
x1 | 0 | 6000 |
x2 | 4000 | 0 |
2. To draw constraint x1+x2≥5000→(2)
Treat it as x1+x2=5000
When x1=0 then x2=?
⇒(0)+x2=5000
⇒x2=5000
When x2=0 then x1=?
⇒x1+(0)=5000
⇒x1=5000
x1 | 0 | 5000 |
x2 | 5000 | 0 |
3. To draw constraint 8x1+2x2≥16000→(3)
Treat it as 8x1+2x2=16000
When x1=0 then x2=?
⇒8(0)+2x2=16000
⇒2x2=16000
⇒x2=160002=8000
When x2=0 then x1=?
⇒8x1+2(0)=16000
⇒8x1=16000
⇒x1=160008=2000
x1 | 0 | 2000 |
x2 | 8000 | 0 |
The value of the objective function at each of these extreme points is as follows:
Extreme Point Coordinates (x1,x2) |
Lines through Extreme Point | Objective function value Z=12x1+3x2 |
A(0,8000) | 3→8x1+2x2≥16000 4→x1≥0 |
12(0)+3(8000)=24000 |
B(1000,4000) | 2→x1+x2≥5000 3→8x1+2x2≥16000 |
12(1000)+3(4000)=24000 |
C(3000,2000) | 1→4x1+6x2≥24000 2→x1+x2≥5000 |
12(3000)+3(2000)=42000 |
D(6000,0) | 1→4x1+6x2≥24000 5→x2≥0 |
12(6000)+3(0)=72000 |
The minimum value of the objective function Z = 24000 occurs at
2 extreme points.
Hence, problem has multiple optimal solutions and min Z =
24000.
*****Please please please LIKE THIS ANSWER, so that I can get a small benefit, Please*****