Question

In: Physics

a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at...

a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at the bottom that has a spring constant of 490N/m the angle of the ramp with respect to the horizontal is 31 degrees

A.) the block starting from rest slides down the ramp a distance 78 cm before hitting the spring how far in cm is the spring compressed as the block comes to momentary rest?

B.) After the block comes to rest the spring pushes the block back up the ramp how fast in meters per second is the block moving right after it comes off the spring

C.) what is the change of the gravitational potential energy in joules between the original position of the block at the top of the ramp and the position of the block when spring is fully compressed?

Solutions

Expert Solution

Given mass of block,

Spring Constant,

First find vertical height difference 'h' covered when the block slides 78cm along the incline

-------------------------

(A)During collision with spring Gravitational Potential Energy is converted to Elastic potential energy of spring

ANSWER:

==============================

(B)Elastic potential energy of spring is converted to kinetic energy

ANSWER:

===============

(c)Length difference between original position of the block at the top of the ramp and the position of the block when spring is fully compressed = 81.86cm

Change of the gravitational potential energy,

ANSWER:

=====================


Related Solutions

A block of mass 5 kg is sitting on a frictionless surface. The block initially has...
A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.   What is the Initial momentum of the block? kg m/s Tries 0/2 What is the Initial Kinetic Energy of the block? J Tries 0/2 What is the change in momentum of the block?   Kg m/s Tries 0/2 What is the final momentum of the block? kg m/s Tries 0/2...
Problem 2 A block of mass 1 kg is sitting on top of a compressed spring...
Problem 2 A block of mass 1 kg is sitting on top of a compressed spring of spring constant k = 300 N/m and equilibrium length 20 cm. Initially the spring is compressed 10 cm, and the block is held in place by someone pushing down on it with his hand. At t = 0, the hand is removed (this involves no work), the spring expands and the block flies upwards. (a)Draw a free-body diagram for the block while the...
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
A frictionless cart of mass ? = 4.00 kg has a shape of a ramp with...
A frictionless cart of mass ? = 4.00 kg has a shape of a ramp with an incline angle ? = 60.0°. The ramp is pulled by a constant horizontal force ? = 15.0 N. Another frictionless cart of mass? = 2.00 kg can roll along the ramp and is attached to the top of the ramp at point ? by a spring of constant ? = 300. N/m. The spring is free to pivot without friction around point ?....
A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has...
A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has an angle of inclination of 37 degrees with respect to the horizontal surface, and a length of 10 meters. The coefficient of static friction between the block and the ramp is .37, the coefficient of kinetic friction is .25. A string is tied from the block and moved up the ramp, over a frictionless pulley and tied to a 15kg block hanging freely 2m...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
To push a crate of mass 55 kg up a frictionless ramp with an angle of...
To push a crate of mass 55 kg up a frictionless ramp with an angle of 50 ° to the horizontal, a worker exerts a force of 1050 N parallel to the incline. The crate moves a distance of 5 m What work is done on the crate by the worker? J Tries 0/2 What work is done by the weight of the crate?   J Tries 0/2 What work is done by the normal force exerted by the floor on...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
You push a block of mass 24kg up a frictionless ramp that makes an angle 0.4189rad...
You push a block of mass 24kg up a frictionless ramp that makes an angle 0.4189rad as measured from horizontal. Immediately after the block leaves your hands it has a velocity of magnitude 11m/s. The block travels up the ramp, reaches its highest point, and heads back down the ramp. When is the magnitude of the block's acceleration the greatest? a) On its way up the ramp. b) On its way down the ramp. c) At its highest point. d)...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT