Question

In: Advanced Math

Solve the linear programming problem by the method of corners. Find the minimum and maximum of...

Solve the linear programming problem by the method of corners.

Find the minimum and maximum of P = 4x + 2y subject to

3x + 5y 20
3x + y 16
−2x + y 1
x ≥ 0, y ≥ 0.

The minimum is P =  

at (x, y) =

The maximum is P =  

at (x, y) =

Solutions

Expert Solution

Method of corners includes drawing the feasible region of the linear programming problem and then finding the corners(extreme points) of the feasible region and then the maximum(if it exists) is the largest value of objective function at that corner. Similarly, the case for minimum goes!

Min value = 11.23 at B (1.15,3.31)

Max value = 26 at A(3,7)

if doubts still bug you, feel free to comment your query!


Related Solutions

Solve the linear programming problem by the method of corners. Maximize P = 5x + 6y    ...
Solve the linear programming problem by the method of corners. Maximize P = 5x + 6y     subject to   x + y ≤ 10 3x + y ≥ 12 −2x + 3y ≥ 8 x ≥ 0, y ≥ 0  
Solve the linear programming problem by the method of corners. Minimize C = 2x + 5y    ...
Solve the linear programming problem by the method of corners. Minimize C = 2x + 5y     subject to   4x + y ≥ 38 2x + y  ≥ 30 x + 3y  ≥ 30 x ≥ 0, y ≥ 0  
Solve the linear programming problem by the method of corners. Maximize P = 3x + 6y    ...
Solve the linear programming problem by the method of corners. Maximize P = 3x + 6y     subject to   x + y ≤ 10 3x + y ≥ 12 −2x + 3y ≥ 13 x ≥ 0, y ≥ 0   The maximum is P = ? at (x, y) = ( ? ),
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1=...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1= ___ and x2=___ a.) Maximize : z= 24x1+2x2 Subject to: 6x1+3x2<=10, x1+4x2<=3 With: x1>=0, x2>=0 b.) Maximize: z=2x1+7x2 Subject to: 5x1+x2<=70, 7x1+2x2<=90, x1+x2<=80 With: x1,x2>=0 c.) Maximize: z=x1+2x2+x3+5x4 Subject to: x1+3x2+x3+x4<=55, 4x+x2+3x3+x4<=109 With: x1>=0, x2>- 0, x3>=0, x4>=0 d.) Maximize: z=4x1+7x2 Subject to: x1-4x2<=35 , 4x1-3x2<=21 With: x1>=0, x2>=0
Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and...
Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and the minimum cost. (Leave no cells blank - be certain to enter "0" wherever required. Omit the "$" sign in your response.) Minimize 8x11 + 2x12 + 5x13 + 2x21 + x22 + 3x23 + 7x31 + 2x32 + 6x33 Subject to x11 + x12 + x13 = 90 x21 + x22 + x23 = 105 x31 + x32 + x33 = 105 x11...
Use the method of this section to solve the linear programming problem. Minimize   C = 2x...
Use the method of this section to solve the linear programming problem. Minimize   C = 2x − 3y + 6z subject to   −x + 2y − z ≤ 9 x − 2y + 2z ≤ 10 2x + 4y − 3z ≤ 12 x ≥ 0, y ≥ 0, z ≥ 0   The minimum is C =   at (x, y, z) =    .
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 21 3x + 2y + 4z ≤ 36 2x + 5y − 2z ≤ 15 x ≥ 0, y ≥ 0, z ≥ 0
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 56 3x + 2y + 4z ≤ 96 2x + 5y − 2z ≤ 40 x ≥ 0, y ≥ 0, z ≥ 0   The maximum is P =  at (x, y, z) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT